LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Introduction
  • Prerequisites
  • Preparation

Was this helpful?

Export as PDF
  1. Tutorials
  2. Lifecycle management
  3. OTA model updates

with Zephyr on Golioth

Previouswith Particle WorkbenchNextAPI examples

Last updated 1 year ago

Was this helpful?

Introduction

This page is part of the tutorial series. If you haven't read the introduction yet, we recommend you to do so .

In this tutorial, we'll guide you through deploying updated impulses over-the-air (OTA) using the Zephyr RTOS. We'll build on Zephyr's firmware update workflow, incorporating API calls to check for updates to your edge impulse project and download the latest build. As Zephyr does not have an OTA update service, and Golioth is used in their OTA guide. We'll use Golioth's OTA update service to deliver the updated firmware to the device. On devices running Zephyr RTOS, leveraging Golioth's cloud platform for the firmware update portion of the process.

Key Features of Golioth OTA Updates:

  • Secure and encrypted firmware delivery

  • Delta updates to minimize download size

  • Integration with Zephyr RTOS

Prerequisites

  • Edge Impulse Account: If you haven't got one, .

  • Trained Impulse: If you're new, follow one of our

  • Knowledge of Zephyr RTOS and nRF Connect SDK

  • A Golioth account and the Golioth SDK installed

Preparation

  1. Clone the Golioth Zephyr SDK examples repository:

git clone https://github.com/golioth/zephyr-sdk.git

On Your nRF9160 Development Board:

  1. Navigate to the Golioth firmware examples folder we are going to modify the device firmware update example to connect to the ingestion API to send data back from device.

cd zephyr-sdk/samples/dfu

Now copy the edge-impulse-sdk folder from the cloned repository into the dfu folder.

cp -r edge-impulse-sdk zephyr-sdk/samples/dfu

Include the header file the dfu example

#include "edge-impulse-sdk/classifier/ei_run_classifier.h"

Take the run inference example from your existing project

You will need to merge in the run inference function from your existing project. This will be the function that will be called to run inference on the device.

static void run_inference() {
    struct sensor_value accel[3];
    struct device *sensor = device_get_binding(SENSOR_DEV_NAME);
    if (sensor == NULL) {
        printk("Could not get %s device\n", SENSOR_DEV_NAME);
        return;
    }
    sensor_sample_fetch(sensor);
    sensor_channel_get(sensor, SENSOR_CHAN_ACCEL_XYZ, accel);

    float features[3];
    for (int i = 0; i < 3; i++) {
        features[i] = sensor_value_to_double(&accel[i]);
    }

Add the run inference function to the main loop

Now add the run inference function to the main loop of the dfu example. This will run inference every 2 seconds.


int main() {
    struct device *sensor = device_get_binding(SENSOR_DEV_NAME);
    if (sensor == NULL) {
        printk("Could not get %s device\n", SENSOR_DEV_NAME);
        return -1;
    }
    struct sensor_trigger trig;
    trig.type = SENSOR_TRIG_DATA_READY;
    trig.chan = SENSOR_CHAN_ACCEL_XYZ;
    if (sensor_trigger_set(sensor, &trig, sensor_trigger_handler) < 0) {
        printk("Could not set trigger for %s sensor\n", SENSOR_DEV_NAME);
        return -1;
    }

    while (1) {
        k_sleep(K_SECONDS(1));
    }

    return 0;
}

Add a call back to send sensor data to Edge Impulse with data captured

static void sensor_trigger_handler(struct device *dev, struct sensor_trigger *trigger) {
    run_inference();
    // Send data to Edge Impulse via ingestion API
    send_data_to_edge_impulse();

}

Add the send data to Edge Impulse function

static void send_data_to_edge_impulse() {
    // Set up HTTP client request
    struct http_client_request req;
    struct http_client_ctx ctx;
    char data_buf[512];
    snprintf(data_buf, sizeof(data_buf), "{\"label\":\"%s\",\"data\":\"%s\"}", "my_label", "my_data");
    http_client_request_init(&req);
    req.method = HTTP_POST;
    req.url = "http://ingestion.edgeimpulse.com/api/training/data";
    req.protocol = "HTTP/1.1";
    req.host = "ingestion.edgeimpulse.com";
    req.header_fields = "Content-Type: application/json\r\n"
                        "x-api-key: " EDGE_IMPULSE_API_KEY "\r\n";
    req.payload = data_buf;
    req.payload_len = strlen(data_buf);
    http_client_init(&ctx, &req);
    // Send HTTP request
    int ret = http_client_send(&ctx);
    if (ret < 0) {
        printf("HTTP request failed: %d\n", ret);
    } else {
        printf("HTTP request sent successfully\n");
    }
}

Add the sensor trigger to the main function

int main() {
    struct device *sensor = device_get_binding(SENSOR_DEV_NAME);
    if (sensor == NULL) {
        printk("Could not get %s device\n", SENSOR_DEV_NAME);
        return -1;
    }
    struct sensor_trigger trig;
    trig.type = SENSOR_TRIG_DATA_READY;
    trig.chan = SENSOR_CHAN_ACCEL_XYZ;
    if (sensor_trigger_set(sensor, &trig, sensor_trigger_handler) < 0) {
        printk("Could not set trigger for %s sensor\n", SENSOR_DEV_NAME);
        return -1;
    }

    while (1) {
        k_sleep(K_SECONDS(1));
    }

    return 0;
}

Building and Running

With the classification, ingestion code and Golioth implementation in place, proceed to build and run the application on the nRF9160 Development Board. Utilize the following commands:

west build -b nrf9160dk_nrf9160_ns -p
west flash

These commands will build and flash the firmware onto your development board.

Verifying The Operation

To verify that the Edge Impulse model is running and updating OTA with Golioth, observe the console output. It should display inference results at regular intervals. Also, you can monitor the device’s firmware version and its updates via the Golioth console.

Testing OTA Updates

Simulate an OTA update by changing the Edge Impulse model and repeating the build and flash process. Monitor the Golioth console for updates and check the device console to observe the changes in inference results.

Conclusion

Congratulations! You've successfully implemented OTA model updates with Edge Impulse on Zephyr RTOS and nRF Connect SDK, facilitated by Golioth. You can now continuously enhance and deploy machine learning models to your edge devices securely and efficiently.

Lifecycle Management with Edge Impulse
here
sign up here
end-to-end tutorials