LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Installing dependencies
  • Connecting to Edge Impulse
  • Next steps: building a machine learning model
  • Deploying back to device
  • ModusToolBox Examples

Was this helpful?

Export as PDF
  1. Edge AI Hardware
  2. MCU

Infineon CY8CKIT-062-BLE Pioneer Kit

PreviousHimax WE-I PlusNextInfineon CY8CKIT-062S2 Pioneer Kit

Last updated 3 months ago

Was this helpful?

CY8CKIT-062-BLE PSoCâ„¢ 6-BLE Pioneer Kit and CY8CKIT-028-EPD expansion kit required

This guide assumes you have the attached to a

The is a hardware platform that enables the evaluation and development of applications using the PSoC™ 63 MCU with AIROC™ Bluetooth® LE. The PSoC 6 BLE Pioneer Kit when paired along with the E-ink display shield board, , forms a powerful combination with its onboard sensors. The kit come with an onboard thermistor, 6-axis motion sensor, and a digital microphone. The PSoC 6 BLE Pioneer Kit baseboard also comes with 2 buttons, a 5-segment slider, and a proximity sensor based on CAPSENSE™ technology.

The Edge Impulse firmware for this development board is open source and hosted on GitHub: .

Installing dependencies

To set this device up with Edge Impulse, you will need to install the following software:

Problems installing the CLI?

Updating the firmware

1. Download the base firmware image

2. Connect the CY8CKIT-062-BLEPioneer Kit to your computer

3. Load the base firmware image with Infineon CyProgrammer

Then select the base firmware image file you downloaded in the first step above (i.e., the file named firmware-infineon-cy8ckit-062-ble.hex). You can now press the Connect button to connect to the board, and finally the Program button to load the base firmware image onto the CY8CKIT-062S2 Pioneer Kit.

Connecting to Edge Impulse

With all the software in place, it's time to connect the CY8CKIT-062S2 Pioneer Kit to Edge Impulse.

1. Connect the development board to your computer

Use a micro-USB cable to connect the development board to your computer.

2. Setting keys

From a command prompt or terminal, run:

edge-impulse-daemon

This will start a wizard which will ask you to log in, and choose an Edge Impulse project. If you want to switch projects run the command with --clean.

3. Verifying that the device is connected

Next steps: building a machine learning model

With everything set up you can now build your first machine learning model with these tutorials:

Deploying back to device

Inferencing with BLE

ModusToolBox Examples

To create an example project you must first open a new ModusToolBox application from the File menu

Then, you must choose which board support package (BSP) you wish to run your application on. Boards that are officially supported will have Edge Impulse examples.

Lastly, in the Project Creator window, you may select any Edge Impulse listings available for that product and click on Create. Please refer to the ModusToolBox help and tutorials for more information on running applications on your device.

. A utility program we will use to flash firmware images onto the target.

The which will enable you to connect your CY8CKIT-062-BLE Pioneer Kit directly to Edge Impulse Studio, so that you can collect raw data and trigger in-system inferences.

See the guide.

Edge Impulse Studio can collect data directly from your CY8CKIT-062-BLE Pioneer Kit and also help you trigger in-system inferences to debug your model, but in order to allow Edge Impulse Studio to interact with your CY8CKIT-062-BLE Pioneer Kit you first need to flash it with our .

, and unzip the file. Once downloaded, unzip it to obtain the firmware-infineon-cy8ckit-062-ble.hex file, which we will be using in the following steps.

Use a micro-USB cable to connect the CY8CKIT-062-BLE Pioneer Kit to your development computer (where you downloaded and installed ).

You can use to flash your CY8CKIT-062-BLE Pioneer Kit with our . To do this, first select your board from the dropdown list on the top left corner. Make sure to select the item that starts with CY8CKIT-062-BLE-XXXX:

Keep Handy

will be needed to upload any other project built on Edge Impulse, but the base firmware image only has to be loaded once.

Alternatively, recent versions of Google Chrome and Microsoft Edge can collect data directly from your development board, without the need for the Edge Impulse CLI. See for more information.

That's all! Your device is now connected to Edge Impulse. To verify this, go to , and click Devices on the left sidebar. The device will be listed there:

.

.

.

Looking to connect different sensors? The lets you easily send data from any sensor into Edge Impulse.

Firmware that is deployed via the Infineon PSoC 63 BLE Pioneer Kit in the Deployment section of an Edge Impulse project come with BLE connectivity. One may download the Infineon for your device and connect. Please watch this short video as a demonstration.

Edge Impulse projects may be found in . These examples allow you to quickly develop applications around machine learning models and the Edge Impulse SDK. If you need to update the model you may from your project and unzip the resulting downloaded folder into your ModusToolBox application.

Infineon CyProgrammer
Edge Impulse CLI
Installation and troubleshooting
base firmware image
Download the latest Edge Impulse firmware
Infineon CyProgrammer
Infineon CyProgrammer
base firmware image
Infineon CyProgrammer
Infineon CyProgrammer
this blog post
your Edge Impulse project
Building a continuous motion recognition system
Recognizing sounds from audio
Keyword spotting
Data forwarder
AIROC BLE App
E-ink Display Shield Board
PSoCâ„¢ 6-BLE Pioneer Kit
Infineon CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit
CY8CKIT-028-EPD
edgeimpulse/firmware-infineon-cy8ckit-062-ble
Infineon's ModusToolBox
Infineon PSoCâ„¢ 6-BLE Pioneer Kit (CY8CKIT-062-BLE) with CY8CKIT-028-EPD display shield)
Connect USB to CY8CKIT-062-BLE
Connecting to the CyProgrammer
Flashing the base image
Device connected to Edge Impulse.
New ModusToolBox Application
Choose BSP
Choose Edge Impulse example
Deploy a C++ library