LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • 1. Getting Started
  • 2. Project Visibility
  • 3. Run this model
  • 4. Collaboration
  • 5. Showcasing your public projects with Markdown READMEs
  • 6. Project info
  • 7. Block Outputs
  • 8. Performance Settings
  • 9. Administrative Zone
  • 10. Danger Zone

Was this helpful?

Export as PDF
  1. Edge Impulse Studio

Project dashboard

PreviousTransforming clinical dataNextSelect AI hardware

Last updated 18 days ago

Was this helpful?

After creating your Edge Impulse Studio project, you will be directed to the project's dashboard. The dashboard gives a quick overview of your project such as your project ID, the number of devices connected, the amount of data collected, the preferred labeling method, among other editable properties. You can also enable some additional capabilities to your project such as collaboration, making your project public, and showcasing your public projects using Markdown READMEs as we will see.

The figure below shows the various sections and widgets of the dashboard that we will cover here.

1. Getting Started

The Getting Started section is here to help. You can choose from 3 different options to get started:

  • Add existing data: When selecting this option, you can then choose to Upload data from your computer or to Add storage bucket

  • Collect new data: When selecting this option, the getting started guide will ask you to either Scan QR code to connect to your phone, Connect to your computer, or to Connect your device or developer board. Make sure that your device or development board is flashed with the Edge Impulse official firmware.

2. Project Visibility

You have two options for your project's visibility:

Private

Public

When a project is public, all of your data, block configurations, intermediate results, and final models will be shared with the world. Your project will be publicly accessible and can be cloned with a single click with the provided URL. There are no limits to the amount of public projects a developer or enterprise may have.

List your project in the public project repository

This is a great way to share your work with the community.

3. Run this model

When you have a trained model available in your project, this card will appear to let you test your model with your phone or your computer. This is particularly useful to validate the behaviour of your model before integrating it into your targeted embedded firmware.

4. Collaboration

To add a collaborator, go to your project's dashboard and find the "Collaborators" widget. Click the '+' icon and type the username or e-mail address of the other user. The user will be invited to create an Edge Impulse account if it doesn't exist.

The user will be automatically added to the project and will get an email notification inviting them to start contributing to your project. To remove a user, simply click on the three dots beside the user then tap ‘Delete’ and they will be automatically removed.

5. Showcasing your public projects with Markdown READMEs

The project README enables you to explain the details of your project in a short way. Using this feature, you can add visualizations such as images, GIFs, code snippets, and text to your project in order to bring your colleagues and project viewers up to speed with the important details of your project. In your README you might want to add things like:

  • What the project does

  • Why the project is useful

  • Motivations of the project

  • How to get started with the project

  • What sensors and target deployment devices you used

  • How you plan to improve your project

  • Where users can get help with your project

To create your first README, navigate to the "about this project" widget and click "add README"

For more README inspiration, check out the public Edge Impulse project tutorials below:

6. Project info

The project info widget shows the project's specifications such as the project ID, labeling method, and latency calculations for your target device.

  • On the labeling method dropdown, you need to specify the type of labeling your dataset and model expect. This can be either one label per data item or bounding boxes. Bounding boxes only work for object detection tasks in the studio. Note that if you interchange the labeling methods, learning blocks will appear to be hidden when building your impulse.

  • One of the amazing Edge Impulse superpowers is the latency calculation component. This is an approximate time in milliseconds that the trained model and DSP operations are going to take during inference based on the selected target device. This hardware in the loop approach ensures that the target deployment device compute resources are not underutilized or over-utilized. It also saves developers' time associated with numerous inference iterations back and forth the studio in search of optimum models.

7. Block Outputs

In the Block Output section, you can download the results of the DSP and ML operations of your impulse.

The downloadable assets include the extracted features, Tensorflow SavedModel, and both quantized and unquantized LiteRT (previously Tensorflow Lite) models. This is particularly helpful when you want to perform other operations to the output blocks outside the Edge Impulse studio. For example, if you need a TensorflowJS model, you will just need to download the TensorFlow saved model from the dashboard and convert it to TensorFlowJS model format to be served on a browser.

8. Performance Settings

This section consists of editable parameters that directly affect the performance of the studio when building your impulse. Depending on the selected or available settings, your jobs can either be fast or slow.

The use of GPU for training and Parallel DSP jobs is currently an internal experimental feature that will be soon released.

9. Administrative Zone

To bring even more flexibility to projects, the administrative zone gives developers the power to enable other additional features that are not found in edge impulse projects by default. Most of these features are usually advanced features intended for organizations or sometimes experimental features.

To activate these features you just need to check the boxes against the specific features you want to use and click save experiments.

10. Danger Zone

The danger zone widget consists of irrevocable actions that let you to:

  • Perform train/test split. This action re-balances your dataset by splitting all your data automatically between the training and testing set and resets the categories for all data.

  • Launch the getting started wizard. This will remove all data, and clear out your impulse.

  • Transfer ownership. This action is available for users who have one or more organizations linked with their accounts. With it, you can start working on a project with your user profile and then transfer the ownership to your organization.

  • Delete your project. This action removes all devices, data, and impulses from your project.

  • Delete all data in this project.

Upload your model: This option will change the default workflow. See to learn more about how to import your existing model to Edge Impulse studio.

Private projects are only visible to you in your developer profile or, if you are on the Enterprise plan, within your organization. There are limits to the number of private projects a developer or enterprise may have. Please refer to our page on our website for details.

If you want to reference your project in the Edge Impulse , you can go to the page, create a version and check the Publish this version under the Apache 2.0 license.

There are different limits for how many collaborators can be added to project depending on its visibility (public or private) and the pricing plan it is associated with (Developer plan or Enterprise plan). Please refer to our page on our website for details.

.

.

.

.

The project ID is a unique numerical value that identifies your project. Whenever you have any issue with your project on the studio, you can always share your project ID on the for assistance from edge Impulse staff.

BYOM
plans and pricing
public project repository
versioning
plans and pricing
Keyword spotting
Continuous motion recognition
Image classification
Sound recognition
forum

Only available on the Enterprise plan

This feature is only available on the Enterprise plan. Review our or sign up for our free today.

plans and pricing
Enterprise trial
The Edge Impulse Studio dashboard.
A public project in the Edge Impulse Studio.
Collaborators
The Edge Impulse Studio project README.
Edge Impulse Studio project information.
Download Edge Impulse Studio project block output.
The Edge Impulse Studio project performance settings.
Edge Impulse Studio project danger zone settings.