LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Installing dependencies
  • Connecting to Edge Impulse
  • Next steps: building a machine learning model
  • Deploying back to device
  • Troubleshooting

Was this helpful?

Export as PDF
  1. Edge AI Hardware
  2. CPU + AI accelerators

MemryX MX3

PreviousDigi ConnectCore 93 Development KitNextMistyWest MistySOM RZ/V2L

Last updated 2 months ago

Was this helpful?

The MemryX MX3 is the latest state-of-the-art AI inference co-processor for running trained Computer Vision (CV) neural network models built using any of the major AI frameworks (TensorFlow, LiteRT (previously Tensorflow Lite), ONNX, PyTorch, Keras) and offering the widest operator support. Running alongside any Host Processor, the MX-3 offloads CV inferencing tasks providing power savings, latency reduction, and high accuracy. The MX-3 can be cascaded together optimizing performance based on the model being run. The MX3 Evaluation Board (EVB) consists of PCBA with 4 MX3’s installed. Multiple EVBs can be cascaded using a single interface cable.

MemryX Developer Hub provides simple 1-click compilation. This portal is intuitive and easy-to-use and includes many tools, such as a Simulator, Python and C++ APIs, and example code. Contact to request an EVB and access to the online Developer Hub.

Installing dependencies

To use MemryX devices with Edge Impulse deployments you must install the following dependencies on your Linux target that has a MemryX device installed.

For Debian based Linux devices you may need to install using the following command. For other Linux distributions please use the necessary package manager for installation.

sudo add-apt-repository universe
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update
sudo apt install python3.8 python3.8-dev python3.8-distutils python3.8-venv

Ubuntu/Debian x86:

sudo apt install -y curl
curl -sL https://deb.nodesource.com/setup_20.x | sudo bash -
sudo apt install -y gcc g++ make build-essential nodejs sox gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-base gstreamer1.0-plugins-base-apps
npm install edge-impulse-linux -g --unsafe-perm

Important: Edge Impulse requires Node.js version 20.x or later. Using older versions may lead to installation issues or runtime errors. Please ensure you have the correct version installed before proceeding with the setup.

Connecting to Edge Impulse

After working through a getting started tutorial, and with all software set up, connect your camera or microphone to your operating system and run:

edge-impulse-linux

This will start a wizard which will ask you to log in, and choose an Edge Impulse project. If you want to switch projects run the command with --clean.

Need sudo?

Some commands require the use of sudo in order to have proper access to a connected camera. If your edge-impulse-linux or edge-impulse-linux-runner command fails to enumerate your camera please try the command again with sudo

Verifying that your device is connected

Next steps: building a machine learning model

With everything set up you can now build your first machine learning model with these tutorials:

No need to int8 model

MemryX devices only need a float32 model to be passed into the compiler. Therefore, when developing models with Edge Impulse it is better not to profile int8 (quantize) models. You may prevent generation, profiling, and deployment of int8 models by deselecting Profile int8 model under the Advanced training settings of your Impulse Design model training section.

Frames per second (FPS), Latency, and Synchronous Calls

The implementation of MemryX MX3 devices into the Edge Impulse SDK uses synchronous calls to the evaluation board. Therefore, frame per second information is relative to that API. For faster performance there is an asynchronous API from MemryX that may be used in place for high performance applications. Please contact Edge Impulse Support for assistance in getting the best performance out of your MemryX MX3 devices!

Deploying back to device

In order to achieve full hardware acceleration models must be converted from their original format to run on the MX3. This can be done by selecting the MX3 from the Deployment Screen. This will generate a .zip file with models that can be used in your application for the MX3. The block uses the MemryX compiler so that the model will run accelerated on the device.

MemryX Dataflow Program Deployment Block

The MemryX Dataflow Program Deployment Block generates a .zip file that contains the converted Edge Impulse model usable by MX3 devices (.dfp file). One can use the MemryX SDK to develop applications using this file.

Linux (x86_64 with MemryX MX3)

The output from this Block is an Edge Impulse .eim file that, once saved onto the computer with the MX3 connected, can be run with the following command.

edge-impulse-linux-runner --model-file <path-to-model.eim>

Running this command will ensure that the model runs accelerated on the MemryX MX3 device.

Need sudo?

Some commands require the use of sudo in order to have proper access to a connected camera. If your edge-impulse-linux or edge-impulse-linux-runner command fails to enumerate your camera please try the command again with sudo

Image model?

If you have an image model then you can get a peek of what your device sees by being on the same network as your device, and finding the 'Want to see a feed of the camera and live classification in your browser' message in the console. Open the URL in a browser and both the camera feed and the classification are shown:

Troubleshooting

UnhandledPromiseRejectionWarning: No response within 5 seconds

Please restart your MX3 evaluation board by using the reset button. Then use the edge-impulse-linux-runner command again. If you are still having issues please contact Edge Impulse support.

Failed to run impulse Capture process failed with code 1

  1. You may need to use sudo edge-impulse-linux-runner to be able to access the camera on your system.

  2. Ensure that you do not have any open processes still using the camera. For example, if you have the Edge Impulse web browser image acquisition page open or a virtual meeting software, please close or disable the camera usage in those applications.

  3. This error could mean that your camera is in use by another process. Check if you have any application open that is using the camera. This error could exist when your previous attempt to run edge-impulse-linux-runner failed with exception. In that case, check if you have a gst-launch-1.0 process running. For example:

ps aux | grep gst-launch-1.0
   5615 pts/0    00:01:52 gst-launch-1.0

In this case, the first number (here 5615) is a process ID. Kill the process:

kill -9 5615

And try to run the model with edge-impulse-linux-runner once again.

Error: Classifying failed, error code was -23 (other issues)

If the previous step didn't help, try to get additional debug data. With your EIM model downloaded, open one terminal window and do:

./model.eim /tmp/ei.socket

Then in another terminal:

edge-impulse-linux-runner --model-file /tmp/ei.socket

This should give you additional info in the first terminal about the possible root of your issue. Contact Edge Impulse Support with the results.

: This is a prerequisite for the MemryX SDK.

MemryX tools and drivers: Please contact for access to their tools and drivers

: This will enable you to connect your development system directly to Edge Impulse Studio

Your machine is now connected to Edge Impulse. To verify this, go to , and click Devices. The device will be listed here.

.

Python 3.8+
MemryX
Edge Impulse Linux
your Edge Impulse project
Image classification
object detection
Counting objects using FOMO
MemryX
MX3 EVB
Device connected to Edge Impulse
MemryX Dataflow Program
Live feed with classification results
Deselect Profile int8 model