LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Buckets
  • Datasets
  • Create a new dataset
  • Data
  • Adding data to your project
  • Previewing Data
  • Recap

Was this helpful?

Export as PDF
  1. Edge Impulse Studio
  2. Organization hub

Data

PreviousData campaignsNextCloud data storage

Last updated 3 days ago

Was this helpful?

Since the creation of Edge Impulse, we have been helping customers to deal with complex data pipelines, complex data transformation methods and complex clinical validation studies.

In most cases, before even thinking about machine learning algorithms, researchers need to build quality datasets from real-world data. These data come from various devices (prototype devices being developed vs clinical/industrial-grade reference devices), have different formats (excel sheets, images, csv, json, etc...), and be stored in various places (researchers' computers, Dropbox folders, Google Drive, S3 buckets, etc...).

Dealing with such complex data infrastructure is time-consuming and expensive to develop and maintain. With the organizational data, we want to give you tools to centralize, validate and transform datasets so they can be easily imported into your projects to train your machine learning models.

Health reference design

We have built a health reference design that describes an end-to-end ML workflow for building a wearable health product using Edge Impulse.

In this reference resign, we want to help you understand how to create a full clinical data pipeline by using a public dataset from the PPG-DaLiA repository. This tutorial will guide you through the following steps:

  • Synchronizing clinical data with a bucket

  • Validating clinical data

  • Querying clinical data

  • Transforming clinical data

  • Buildling data pipelines

Buckets

Before we get started, you must link your organization with one or more storage buckets. Further details about how to integrate with cloud storage providers can be found in the Cloud data storage document.

Datasets

Two types of dataset structures can be used - Generic datasets (default) and Clinical datasets.

There is no required format for data files. You can upload data in any format, whether it's CSV, Parquet, or a proprietary data format.

However, to import data items to an Edge Impulse project, you will need to use the right format as our studio ingestion API only supports these formats:

  • JPG, PNG images

  • MP4, AVI video files

  • WAV audio files

  • CBOR/JSON files in the Edge Impulse data acquisition format

  • CSV files

Tip: You can use transformation blocks to convert your data

The default dataset structure is a file-based one, no matter the directory structure:

For example:

images/
├── testing/
│   ├── 1.jpg
│   ├── 2.jpg
│   ├── 3.jpg
│   ...
│   └── 200.jpg
└── training/
    ├── 1.jpg
    ├── 2.jpg
    ├── 3.jpg
    ...
    └── 800.jpg

or:

keywords/
├── french-accent/
│   ├── hello.wav
│   ├── yes.wav
│   ├── no.wav
├── greek-accent/
│   ├── hello.wav
│   ├── yes.wav
│   ├── no.wav
└── unlabeled/
    ├── 1.wav
    ├── 2.wav
    ├── 3.wav
    ...
    └── 20.wav

Note that you will be able to associate the labels of your data items from the file name or the directory name when importing your data in a project.

The clinical datasets structure in Edge Impulse has three layers:

  1. The dataset, a larger set of data items, grouped together.

  2. Data item, an item with metadata and files attached.

  3. Data file, the actual files.

See the health reference design tutorial for a deeper explanation.

Create a new dataset

Once you successfully linked your storage bucket to your organization, head to the Datasets tab and click on + Add new dataset:

Fill out the following form:

Click on Create dataset

Data

With your datasets imported, you can now navigate into your dataset, create folders, query your dataset, add data items and import your data to an Edge Impulse project.

Default view

The default view lets you navigate in your bucket following the directory structure. You can easily add data using the "+ New folder" button. To add new data, use the right panel - drag and drop your files and folders and it will automatically upload them to your bucket.

Clinical view

The clinical view is slightly different, see synchronizing clinical data with a bucket for more information. This view lets you easily query your clinical dataset but to import data, you will need to set up an upload portal or upload them directly to your bucket.

Tip: You can add two distinct datasets in Edge Impulse that point to the same bucket path, one generic and one clinical. This way you can leverage both the easy upload and the ability to query your datasets.

Adding data to your project

Go to the Actions...->Import data into a project, select the project you wish to import to and click Next, Configure how to label this data:

This will import the data into the project and optionally create a new label for each file in the dataset. This labeling step helps you keep track of different classes or categories within your data.

After importing the data into the project, in the Next, post-sync actions step, you can configure a data pipeline to automatically retrieve and trigger actions in your project:

Previewing Data

We also have added a data preview feature, allowing you to visualize certain types of data directly within the organization data tab.

Supported data types include tables (CSV/Parquet), images, PDFs, audio files (WAV/MP3), and text files (TXT/JSON). This feature gives you a quick overview of your data and helps ensure its integrity and correctness.

Recap

If you need to get data into your organization, you can now do this in a few simple steps. To go further and use advanced features, query your datasets or transform your dataset, please have a look at the health reference design tutorial 🚀

Any questions, or interested in the enterprise version of Edge Impulse? Contact us for more information.

Datasets overview
Add new dataset
Add dataset
Data items overview
Clinical dataset overview
Uploading Files
Label your files
Data items overview - CSV/Parquet type
Data items overview - image type

Only available on the Enterprise plan

This feature is only available on the Enterprise plan. Review our or sign up for our free today.

plans and pricing
Enterprise trial