LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • 1. Setup
  • 1.1 Update your PROJECT_ID
  • 1.2 Obtain your API Key
  • 1.3 Run the setup block
  • 2. Customization
  • 2.1 Enable advanced EON Tuner mode (optional)
  • 2.2 Update the EON Tuner configuration
  • 2.3 Start the EON Tuner
  • 2.4 Track the EON Tuner optimization progress
  • 2.5 Get the EON Tuner optimization results

Was this helpful?

Export as PDF
  1. Tutorials
  2. API examples

Customize the EON Tuner

PreviousAPI examplesNextPython API bindings example

Last updated 1 year ago

Was this helpful?

The EON Tuner is Edge Impulse's AutoML (automated machine learning) tool to help you find and select the best embedded machine learning model for your application within the constraints of your target device.

This notebook will show you how to configure and run the EON Tuner programmatically using the !

1. Setup

This section will set up your environment and API credentials so that you can start making calls to the from this notebook. Run this block only once per runtime session, or every time you:

  • Open the notebook on your browser or IDE to start working on it, or

  • restart the runtime, or

  • change the project you are working on

API documentation is available at https://docs.edgeimpulse.com/reference/edge-impulse-api

1.1 Update your PROJECT_ID

You will need to enter the correct PROJECT_ID for the project you want to work with, in the code in section 1.3 below. The project ID can be obtained from your Edge Impulse Project's Dashboard under the Project Info section.

1.2 Obtain your API Key

The block below will prompt you for your project's API Key. You can obtain this key from your Project's Dashboard, by selecting the Keys tab from the top navigation bar.

1.3 Run the setup block

Run the block below and enter your API key when prompted. Then continue to the next section.

import getpass
import requests
import json
import pytz
from datetime import datetime
import time
import sys

PROJECT_ID = 94424  #šŸ‘ˆšŸ¼ Update as necessary!

URL_STUDIO = "https://studio.edgeimpulse.com/v1/api/"
URL_PROJECT = URL_STUDIO + str(PROJECT_ID)
KEY = getpass.getpass('Enter your API key: ')
API_HEADERS = {
    "Accept": "application/json",
    "x-api-key": KEY  #šŸ‘ˆšŸ¼ Update as necessary!
}


def get_eon_info(project, response_key):
    response = requests.get(URL_STUDIO + str(project) + "/optimize/state",
                            headers=API_HEADERS)
    if response.ok:
        return json.loads(response.text)[response_key]

response = requests.get(URL_PROJECT, headers=API_HEADERS)
if response.ok:
    data = json.loads(response.text)
    print(json.dumps(data, indent=2))
else:
    print("\nā›”ļø An Error Ocurred, do you have the correct project ID?")

2. Customization

You can use the code in section 2.2 below to programmatically update the configuration of the EON Tuner.

2.1 Enable advanced EON Tuner mode (optional)

In basic mode (the default) you will be able to modify the datasetCategory, targetLatency and targetDevice. For additional control, ask your User Success or Solutions Engineer to enable the EON Tuner advanced mode for you.

2.2 Update the EON Tuner configuration

if "running" == get_eon_info(PROJECT_ID, "status")["status"]:
    print(
        "EON Tuner job is running, run section 2.4 to track the job's progress."
    )
else:
    payload = {
        "datasetCategory": # Select one of:
            # "speech_keyword"
            # "speech_continuous"
            # "audio_event"
            # "audio_continuous"
            # "transfer_learning"
            # "motion_event"
            # "motion_continuous"
            # "audio_syntiant"
            "audio_continuous",
        "targetLatency": 500,  # Latency in ms
        "targetDevice": {
            "name":  # Select one of:
            # cortex-m4f-80mhz
            # cortex-m7-216mhz
            # st-iot-discovery-kit
            # arduino-nano-33-ble
            # nordic-nrf52840-dk
            # nordic-nrf5340-dk
            # nordic-nrf9160-dk
            # silabs-thunderboard-sense-2
            # silabs-xg24
            # synaptics-ka10000
            # himax-we-i
            # wio-terminal
            # sony-spresense
            # ti-launchxl
            # portenta-h7
            # mbp-16-2020
            # raspberry-pi-4
            # raspberry-pi-rp2040
            # jetson-nano
            "jetson-nano",
            "ram": 262144,  # Memory in bytes
            "rom": 1048576  # Memory in bytes
        },
        "trainingCycles": 10,  # Default 100
        "tuningMaxTrials": 3,  # Default 30
        "tuningWorkers": 9,  # Default 3
        "minMACCS": 100,  # Default 0
        "maxMACCS": 1750,  # Default 1750000
        "tuningAlgorithm": # Select one of:
        # "random"
        # "hyperband"
        # "bayesian"
        "random"
    }
    response = requests.post(URL_PROJECT + "/optimize/config",
                            headers=API_HEADERS,
                            json=payload)
    if response.ok:
        # Show me the new configuration
        response = requests.get(URL_PROJECT + "/optimize/state", headers=API_HEADERS)
        if response.ok:
            print("EON Tuner configuration updated successfully!")
            print(json.dumps(get_eon_info(PROJECT_ID, "config"), indent=2))

2.3 Start the EON Tuner

Run the cell below to start spinning up EON Tuner optimization jobs. If your project is already running an EON Tuner optimization, go instead to section 2.4 to track the job's progress.

if "running" == get_eon_info(PROJECT_ID, "status")["status"]:
    print(
        "EON Tuner job is running, run section 2.4 to track the job's progress."
    )
else:
    response = requests.post(URL_PROJECT + "/jobs/optimize", headers=API_HEADERS)
    if response.ok:
        data = json.loads(response.text)
        print("EON Tuner job %s started successfully!" % data["id"])
        # print(json.dumps(data, indent=2))

2.4 Track the EON Tuner optimization progress

Run the cell below to track the progress of your EON Tuner job. You can safely stop and restart the cell at any time since this will not affect the running EON Tuner jobs.

finished = False
job_id = get_eon_info(PROJECT_ID, "activeTunerJobId")

while not finished:
    response = requests.get(URL_PROJECT + "/jobs/" + str(job_id) + "/status", headers=API_HEADERS)
    if response.ok:
        job_status = json.loads(response.text)
        if "finishedSuccessful" in job_status["job"].keys():
            print("\nJob completed")
            finished = True
        else:
            response = requests.get(URL_PROJECT + "/optimize/state", headers=API_HEADERS)
            if response.ok:
                status = json.loads(response.text)["status"]
                started = datetime.fromisoformat(job_status["job"]["started"].replace("Z", "+00:00"))
                for iter in range(30):
                    now = datetime.now(pytz.utc)
                    diff = now - started
                    sys.stdout.write("\r[%s] " % diff) # Back to the beginning
                    for x in range(status["numCompletedTrials"]):
                        sys.stdout.write("ā–ˆ")
                    for x in range(status["numRunningTrials"]):
                        sys.stdout.write("ā–’")
                    for x in range(status["numPendingTrials"]):
                        sys.stdout.write(" ")
                    total = status["numCompletedTrials"] + status[
                        "numRunningTrials"] + status["numPendingTrials"]
                    sys.stdout.write(" %d/%d" % (status["numCompletedTrials"], total))
                    time.sleep(1)

2.5 Get the EON Tuner optimization results

Use the cell below to retrieve the EON Tuner optimization results and save them to the trials variable.

trials = get_eon_info(PROJECT_ID, "trials")
print(trials[0].keys())
Edge Impulse API
Edge Impulse API
Works with Edge Impulse
Open in Google Colab