LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Edge AI Hardware
  • Production-ready
  • MCU
  • MCU + AI Accelerators
  • CPU
  • CPU + AI Accelerators
  • CPU + GPU

Was this helpful?

Export as PDF
  1. Edge AI Hardware

Overview

PreviousTwo cameras, two models - running multiple object detection models on the RZ/V2LNextProduction-ready

Last updated 2 months ago

Was this helpful?

We support any Edge AI Hardware that can run C++, and more!

You will find on this page a list of edge AI hardware targets that are either maintained by Edge Impulse or by our partners. During the integration and when possible, we leverage and integrate the hardware capabilities (optimized floating point units (FPU), DSP and Neural Network accelerations, GPU or other AI accelerators).

For the MCU-based hardware, depending on the integration we provide several or all of the following options:

  • A default Edge Impulse firmware, ready to be flashed on the hardware. The firmware capabilities depends on the integration (see also Edge Impulse firmwares).:

    • Data collection: Enables to connect the hardware to Edge Impulse Studio to simplify your getting started journey and ease the from some or all the sensors available.

    • Inferencing example: This includes the data sampling, extracting features using the signal processing blocks and run the inference using learning blocks.

    • Serial protocol and/or remote management protocol.

    • The open-source code for the firmware, which comes with documentation on how to build and compile the Edge Impulse firmware.

  • Examples on how to integrate your Impulse with your custom firmware, either using the C++ inferencing SDK or using libraries or components tailored for your hardware development environments. In our Github repository, search for the example-standalone-inferencing-%target%

  • Integrated deployment options to directly export a ready-to-flash Edge Impulse firmware packaged with your Impulse (including both the signal processing and the machine learning model).

  • Profiling (estimation of memory, flash and latency) available in Edge Impulse Studio and in the Edge Impulse Python SDK.

  • Extensive hardware testing, to make sure any improvements and changes in Edge Impulse will not break the current integration.

Not on the list?

If you are using a different hardware target or custom PCB? No problem!

You can upload data to Edge Impulse in a variety of ways, such as using the Data forwarder, the Edge Impulse for Linux SDK, or by uploading files directly (e.g. CSV, JPG, WAV).

From there, your trained model can be deployed as a C++ library. It can require some effort, but most build systems (for computers, smartphones, and microcontrollers) will work with our C++ library. This, of course, requires that your build system has a C++ compiler and that there is enough flash/RAM on your device to run the library/model. And although we leverage hardware acceleration when possible on the hardware listed in this section, keep in mind that our EON Compiler will optimize your preprocessing and your ai models for any targets compared to traditional compiler options.

Also, if you feel like porting the official Edge Impulse firmware to your own board, use this porting guide.

For the Linux-based hardware, depending on the integration we provide several or all of the following options:

  • The Edge Impulse Linux CLI: It contains tools that let you collect data from any microphone or camera, download the .eim (Edge Impulse Models) or run a test application to classify your data, available on your terminal or through a web interface.

  • Deployment options:

    • , Edge Impulse for Linux models are delivered in .eim format. This is an executable that contains your signal processing and ML code, compiled with optimizations for your processor, GPU or other AI accelerators.

    • , for environments supporting containerized workloads, facilitating deployment on gateways or in the cloud with full hardware acceleration for most Linux targets.

  • Linux Inferencing SDKs: To build your own applications, or collect data from new sensors, you can use the high-level language SDKs. These use full hardware acceleration, and let you integrate your Edge Impulse models in a few lines of code

  • Profiling (estimation of memory, flash and latency), available in Edge Impulse Studio and in the Edge Impulse Python SDK.

Not on the list?

Different development board? Probably no problem! You can use the Linux x86_64 getting started guide to set up the Edge Impulse for Linux CLI tool or use the Docker, and you can run your impulse on any x86_64, ARMv7 or AARCH64 Linux target. And although we leverage hardware acceleration when possible on the hardware listed in this section, keep in mind that our EON Compiler will optimize your preprocessing and your ai models for any targets compared to traditional compiler options.

You can upload data to Edge Impulse in a variety of ways, such as using the Data forwarder, the Edge Impulse for Linux SDK, or by uploading files directly (e.g. CSV, JPG, WAV).

The hardware targets listed in this section are the perfect way to start building machine learning solutions on real embedded hardware. Edge Impulse's Solution Engineers and Embedded Engineers have a strong expertise with these hardware targets and can help on your integration. Feel free to contact us.

If you just want to experience Edge Impulse? You can also use your Mobile phone!

Edge AI Hardware

Production-ready

  • Advantech ICAM-540 (Linux | Industrial AI Camera with NVIDIA Orin NX)

  • Seeed SenseCAP A1101 (MCU | LoRaWAN Vision AI Sensor using Himax)

  • BrickML (MCU | Industry Reference Design using RA6M5)

MCU

  • Ambiq Apollo4 (Cortex-M4F 192MHz)

  • Ambiq Apollo5 (Cortex-M55 250MHz)

  • Arducam Pico4ML TinyML Dev Kit (RP2040 | Cortex-M0+ 200MHz)

  • Arduino Nano 33 BLE Sense (nRF52840 | Cortex-M4F 64MHz)

  • Arduino Nicla Sense ME (nRF52832 | Cortex-M4 64MHz)

  • Arduino Nicla Vision (STM32H747AII6 | Cortex-M7 480MHz)

  • Arduino Portenta H7 (STM32H747XI | Cortex-M7 480MHz)

  • Blues Wireless Swan (STM32L4+ | Cortex-M4 120MHz)

  • Espressif ESP-EYE (ESP32 | Xtensa LX6 240MHz)

  • Himax WE-I Plus (HX6537-A | ARC DSP 400MHz)

  • Infineon CY8CKIT-062-BLE Pioneer Kit (PSoC63 | Cortex-M4F 150MHz)

  • Infineon CY8CKIT-062S2 Pioneer Kit (PSoC62 | Cortex-M4F 150MHz)

  • Nordic Semi nRF52840 DK (nRF52840 | Cortex-M4F 64MHz)

  • Nordic Semi nRF5340 DK (nRF5340 | Cortex-M33 128MHz)

  • Nordic Semi nRF9160 DK (nRF9160 | Cortex-M33 64MHz)

  • Nordic Semi nRF9161 DK (nRF9160 | Cortex-M33 64MHz)

  • Nordic Semi nRF9151 DK (nRF9160 | Cortex-M33 64MHz)

  • Nordic Semi nRF7002 DK (nRF7002 | Cortex-M33 128MHz)

  • Nordic Semi Thingy:53 (nRF5340 | Cortex-M33 128MHz)

  • Nordic Semi Thingy:91 (nRF9160 | Cortex-M33 64MHz)

  • Open MV Cam H7 Plus (STM32H743II | Cortex-M7 480MHz)

  • Particle Photon 2 (RTL8721DM | Cortex-M33 200MHz)

  • Particle Boron (nRF52840 | Cortex-M4 64MHz)

  • RAKwireless WisBlock (RP2040 | Cortex-M0+ 200MHz, Xtensa LX6 240MHz, ESP32, nRF52840 | Cortex-M4F 64MHz)

  • Raspberry Pi RP2040 (RP2040 | Cortex-M0+ 200MHz)

  • Renesas CK-RA6M5 Cloud Kit (RA6M5 | Cortex-M33 200MHz)

  • Renesas EK-RA8D1 (RA8D1 | Cortex-M85 480MHz)

  • Seeed Grove - Vision AI Module (HX6537-A | ARC DSP 400MHz)

  • Seeed Wio Terminal (HX6537-A | ARC DSP 400MHz)

  • Seeed XIAO nRF52840 Sense (nRF52840 | Cortex-M4F 64MHz)

  • Seeed XIAO ESP32 S3 Sense (ESP32S3 | Xtensa LX7 240MHz)

  • SiLabs Thunderboard Sense 2 (EFR32MG12 | Cortex-M4 40MHz)

  • Sony's Spresense (CXD5602 | Cortex-M4F 156MHz)

  • ST B-L475E-IOT01A (STM32L4 | Cortex-M4 120MHz)

  • TI CC1352P Launchpad (CC1352P | Cortex-M4F 48MHz)

MCU + AI Accelerators

  • Alif Ensemble (Cortex-M55 + Ethos-U55 (multiple cores))

  • Arduino Nicla Voice (Cortex-M4 + NDP120)

  • Avnet RASynBoard (RA6 + NDP120)

  • SiLabs xG24 Dev Kit (Cortex-M33 78MHz + SiLabs MVP)

  • STMicroelectronics STM32N6570-DK (Cortex-M55 + ST Neural-ART Accelerator)

  • Synaptics Katana EVK (KA10000)

  • Syntiant Tiny ML Board (NDP101)

  • Seeed Grove Vision AI Module

  • Seeed Grove Vision AI Module V2 (WiseEye2)

  • Himax WiseEye2 ISM Module/Devboard

CPU

  • macOS (x86, M1, M2)

  • Linux x86_64 (x86_64)

  • Raspberry Pi 4 (ARMv7 | Cortex-A72 1.5GHz)

  • Texas Instruments SK-AM62 (AM62x | Cortex-A53 1.4GHz)

  • Microchip SAMA7G54 (SAMA7G54 | Cortex-A7)

  • Renesas RZ/G2L (RZ/G2L | Cortex-A55 1.2GHz)

CPU + AI Accelerators

  • AVNET RZBoard V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)

  • BrainChip AKD1000 (x86_64 or AARCH64 + AKD1000)

  • i.MX 8M Plus EVK (i.MX 8M Plus | Cortex-A53 1.8GHz + NPU)

  • Digi ConnectCore 93 Development Kit (i.MX 93 | Cortex-A55 1.7GHz + NPU)

  • MemryX MX3 (x84_64 | MX3 5 TFLOPs)

  • MistyWest MistySOM RZ/V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)

  • Qualcomm Dragonwing RB3 Gen 2 Dev Kit (QCS6490 | 2x Kryo 360 Gold @ 2.0 GHz + 6x Kryo 360 Silver @ 1.7 GHz + Hexagon 685)

  • Renesas RZ/V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)

  • Renesas RZ/V2H (RZ/V2H | Cortex-A55 1.8GHz + Dual Cortex-R8 + TVM/DRP)

  • Texas Instruments SK-TDA4VM (TDA4VM | Cortex-A72 + C7x 8TFLOPs)

  • Texas Instruments SK-AM62A-LP (AM62A | Cortex-A53 + AI Accelerator 2 TFLOPs)

  • Texas Instruments SK-AM68A (AM68x | Cortex-A72 + AI Accelerator 8 TFLOPs)

CPU + GPU

  • Advantech ICAM-540 (AARCH64 | Cortex-A78AE (NVIDIA Orin NX) + NVIDIA Ampere 1024 cores + 32 Tensor Cores)

  • NVIDIA Jetson Orin and Nano (Nano: AARCH64 | Cortex-A57 + NVIDIA Maxwell 128 CUDA cores)

  • Seeed reComputer Jetson (AARCH64 | Cortex-A47 1.43 GHz + NVIDIA Maxwell 128 CUDA cores)

Linux .eim
Docker container
data collection