LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Data
  • Processing
  • Learning
  • Deployment
  • Other

Was this helpful?

Export as PDF

Frequently asked questions (FAQ)

PreviousFor embedded engineersNextEnd-to-end tutorials

Last updated 18 days ago

Was this helpful?

Data

Does Edge impulse integrate with cloud storage services?

Yes. The enterprise version of Edge Impulse can integrate directly with your cloud storage provider to access and transform data.

How is the labeling of the data performed?

Using the Edge Impulse Studio data acquisition tools (like the or ), you can collect data samples manually with a pre-defined label.

If you have a dataset that was collected outside of Edge Impulse, you can upload your dataset using the , , , or . You can then use the Edge Impulse Studio to split up your data into labeled chunks, crop your data samples, and more to create high quality machine learning datasets.

Processing

What signal processing is available in Edge Impulse?

A big part of Edge Impulse are the processing blocks, as they clean up the data, and extract important features from your data before passing it to a machine learning model.

The source code for these processing blocks can be found on GitHub: (and you can build as well).

How does the feature explorer visualize data that has more that 3 dimensions?

Edge Impulse uses (a dimensionality reduction algorithm) to project high dimensionality input data into a 2 or 3 dimensional space. This even works for extremely high dimensionality data such as images.

Learning

What frameworks does Edge Impulse use to train the machine learning models?

We use a wide variety of tools, depending on the machine learning model. For neural networks we typically use TensorFlow and Keras, for object detection models we use TensorFlow with Google's Object Detection API, and for 'classic' non-neural network machine learning algorithms we mainly use sklearn. For neural networks you can see (and modify) the Keras code by clicking â‹®, and selecting Switch to expert mode.

Can I use a model that has been trained outside of Edge Impulse?

Deployment

What are the minimum hardware requirements to run the Edge Impulse inferencing library on my embedded device?

The minimum hardware requirements for the embedded device depends on the use case. Anything from a Cortex-M0+ for vibration analysis to Cortex-M4F for audio, Cortex-M7 for image classification to Cortex-A for object detection in video should work.

What is the typical power consumption of the Edge Impulse machine learning processes on my device?

Simple answer: To get an indication of time per inference we show performance metrics in every DSP and ML block in Studio. Multiply this by the active power consumption of your MCU to get an indication of power cost per inference.

More complicated answer: It depends. Normal techniques to conserve power still apply to ML, so try to do as little as possible (do you need to classify every second, or can you do it once a minute?), be smart about when to run inference (can there be an external trigger like a motion sensor before you run inference on a camera?), and collect data in a lower power mode (don't run at full speed when sampling low-resolution data, and see if your sensor can use an interrupt to wake your MCU - rather than polling).

What engine does Edge Impulse use to compile the impulse?

It depends on the hardware.

For general-purpose MCUs we typically use EON Compiler with TFLite Micro and additional kernels (including hardware optimization, e.g. via CMSIS-NN, ESP-NN).

On Linux, if you run the impulse on CPU, we use LiteRT (previously Tensorflow Lite).

For accelerators we use a wide variety of other runtimes, e.g. hardcoded network in silicon for Syntiant, custom SNN-based inference engine for Brainchip Akida, DRP-AI for Renesas RZV2L, etc...

Is there a downside to enabling the EON Compiler?

By disabling EON we place the full neural network (architecture and weights) into ROM, and load it on demand. This increases memory usage, but you could just update this section of the ROM (or place the neural network in external flash, or on an SD card) to make it easier to update.

What is the .eim model format for Edge Impulse for Linux?
Can I use an unsupported development board or a custom PCB (with a different microcontroller or microprocessor) with Edge Impulse?

Yes! A "supported board" simply means that there is an official or community-supported firmware that has been developed specifically for that board that helps you collect data and run impulses. Edge Impulse is designed to be extensible to computers, smartphones, and a nearly endless array of microcontroller build systems.

You can collect data from you custom board and upload it to Edge Impulse in a variety of ways. For example:

Other

How can I share my Edge Impulse project?

You can also create a public version of your Edge Impulse project. This makes your project available to the whole world - including your data, your impulse design, your models, and all intermediate information - and can easily be cloned by anyone in the community. To do so, go to Dashboard, and click Make this project public.

How can I cite Edge Impulse in scientific publications?

If you use Edge Impulse in a scientific publication, we would appreciate citations to the following paper:

@misc{hymel2023edgeimpulsemlopsplatform,
      title={Edge Impulse: An MLOps Platform for Tiny Machine Learning},
      author={Shawn Hymel and Colby Banbury and Daniel Situnayake and Alex Elium and Carl Ward and Mat Kelcey and Mathijs Baaijens and Mateusz Majchrzycki and Jenny Plunkett and David Tischler and Alessandro Grande and Louis Moreau and Dmitry Maslov and Artie Beavis and Jan Jongboom and Vijay Janapa Reddi},
      year={2023},
      eprint={2212.03332},
      archivePrefix={arXiv},
      primaryClass={cs.DC},
      url={https://arxiv.org/abs/2212.03332},
}

Yes you can! Check out our documentation on to see how to import your model into your Edge Impulse project, and using the !

View our for more details.

Also see .

The compiles your neural networks to C++ source code, which then gets compiled into your application. This is great if you need the lowest RAM and ROM possible (EON typically uses 30-50% less memory than LiteRT (previously Tensorflow Lite) but you also lose some flexibility to update your neural networks in the field - as it is now part of your firmware).

See on the Edge Impulse for Linux pages.

Transmitting data to the

Using the SDK

By (e.g. CBOR, JSON, CSV, WAV, JPG, PNG)

Your trained model can be deployed as part a . It requires some effort, but most build systems will work with our C++ library, as long as that build system has a C++ compiler and there is enough flash/RAM on your device to run the library (which includes the DSP block and model).

To collaboration on your projects, go to your , find the Collaborators section, and click the '+' icon.

serial daemon
data forwarder
Edge Impulse CLI
data ingestion API
web uploader
enterprise data storage bucket tools
enterprise upload portals
edgeimpulse/processing-blocks
your own processing blocks
UMAP
Bring your own model (BYOM)
Edge Impulse Python SDK
inference performance metrics
Analyse Power Consumption in Embedded ML Solutions
EON Compiler
Data forwarder
Edge Impulse for Linux
uploading files directly
C++ library
project dashboard
Edge Impulse: An MLOps Platform for Tiny Machine Learning
.eim models?
Managing collaborators on a project
Public project versioning on the Edge Impulse dashboard