LogoLogo
HomeAPI & SDKsProjectsForumStudio
  • Getting started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions (FAQ)
  • Tutorials
    • End-to-end tutorials
      • Computer vision
        • Image classification
        • Object detection
          • Object detection with bounding boxes
          • Detect objects with centroid (FOMO)
        • Visual anomaly detection
        • Visual regression
      • Audio
        • Sound recognition
        • Keyword spotting
      • Time-series
        • Motion recognition + anomaly detection
        • Regression + anomaly detection
        • HR/HRV
        • Environmental (Sensor fusion)
    • Data
      • Data ingestion
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
        • Using the Edge Impulse Python SDK to upload and download data
        • Trigger connected board data sampling
        • Ingest multi-labeled data using the API
      • Synthetic data
        • Generate audio datasets using Eleven Labs
        • Generate image datasets using Dall-E
        • Generate keyword spotting datasets using Google TTS
        • Generate physics simulation datasets using PyBullet
        • Generate timeseries data with MATLAB
      • Labeling
        • Label audio data using your existing models
        • Label image data using GPT-4o
      • Edge Impulse Datasets
    • Feature extraction
      • Building custom processing blocks
      • Sensor fusion using embeddings
    • Machine learning
      • Classification with multiple 2D input features
      • Visualize neural networks decisions with Grad-CAM
      • Sensor fusion using embeddings
      • FOMO self-attention
    • Inferencing & post-processing
      • Count objects using FOMO
      • Continuous audio sampling
      • Multi-impulse (C++)
      • Multi-impulse (Python)
    • Lifecycle management
      • CI/CD with GitHub Actions
      • Data aquisition from S3 object store - Golioth on AI
      • OTA model updates
        • with Arduino IDE (for ESP32)
        • with Arduino IoT Cloud
        • with Blues Wireless
        • with Docker on Allxon
        • with Docker on Balena
        • with Docker on NVIDIA Jetson
        • with Espressif IDF
        • with Nordic Thingy53 and the Edge Impulse app
        • with Particle Workbench
        • with Zephyr on Golioth
    • API examples
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Python API bindings example
      • Running jobs using the API
      • Trigger connected board data sampling
    • Python SDK examples
      • Using the Edge Impulse Python SDK to run EON Tuner
      • Using the Edge Impulse Python SDK to upload and download data
      • Using the Edge Impulse Python SDK with Hugging Face
      • Using the Edge Impulse Python SDK with SageMaker Studio
      • Using the Edge Impulse Python SDK with TensorFlow and Keras
      • Using the Edge Impulse Python SDK with Weights & Biases
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
        • Cloud data storage
      • Data pipelines
      • Data transformation
        • Transformation blocks
      • Upload portals
      • Custom blocks
        • Custom AI labeling blocks
        • Custom deployment blocks
        • Custom learning blocks
        • Custom processing blocks
        • Custom synthetic data blocks
        • Custom transformation blocks
      • Health reference design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
    • Project dashboard
      • Select AI hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (time-series)
      • Multi-label (time-series)
      • Tabular data (pre-processed & non-time-series)
      • Metadata
      • Auto-labeler | deprecated
    • Impulses
    • EON Tuner
      • Search space
    • Processing blocks
      • Audio MFCC
      • Audio MFE
      • Audio Syntiant
      • Flatten
      • HR/HRV features
      • Image
      • IMU Syntiant
      • Raw data
      • Spectral features
      • Spectrogram
      • Custom processing blocks
      • Feature explorer
    • Learning blocks
      • Anomaly detection (GMM)
      • Anomaly detection (K-means)
      • Classification
      • Classical ML
      • Object detection
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • Object tracking
      • Regression
      • Transfer learning (images)
      • Transfer learning (keyword spotting)
      • Visual anomaly detection (FOMO-AD)
      • Custom learning blocks
      • Expert mode
      • NVIDIA TAO | deprecated
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
    • Bring your own model (BYOM)
    • File specifications
      • deployment-metadata.json
      • ei-metadata.json
      • ids.json
      • parameters.json
      • sample_id_details.json
      • train_input.json
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
      • Rust Library
    • Rust Library
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On Android
      • On your desktop computer
      • On your Alif Ensemble Series Device
      • On your Espressif ESP-EYE (ESP32) development board
      • On your Himax WE-I Plus
      • On your Raspberry Pi Pico (RP2040) development board
      • On your SiLabs Thunderboard Sense 2
      • On your Spresense by Sony development board
      • On your Syntiant TinyML Board
      • On your TI LaunchPad using GCC and the SimpleLink SDK
      • On your Zephyr-based Nordic Semiconductor development board
    • Arm Keil MDK CMSIS-PACK
    • Arduino library
      • Arduino IDE 1.18
    • Cube.MX CMSIS-PACK
    • Docker container
    • DRP-AI library
      • DRP-AI on your Renesas development board
      • DRP-AI TVM i8 on Renesas RZ/V2H
    • IAR library
    • Linux EIM executable
    • OpenMV
    • Particle library
    • Qualcomm IM SDK GStreamer
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Edge Impulse firmwares
    • Hardware specific tutorials
      • Image classification - Sony Spresense
      • Audio event detection with Particle boards
      • Motion recognition - Particle - Photon 2 & Boron
      • Motion recognition - RASynBoard
      • Motion recognition - Syntiant
      • Object detection - SiLabs xG24 Dev Kit
      • Sound recognition - TI LaunchXL
      • Keyword spotting - TI LaunchXL
      • Keyword spotting - Syntiant - RC Commands
      • Running NVIDIA TAO models on the Renesas RA8D1
      • Two cameras, two models - running multiple object detection models on the RZ/V2L
  • Edge AI Hardware
    • Overview
    • Production-ready
      • Advantech ICAM-540
      • Seeed SenseCAP A1101
      • Industry reference design - BrickML
    • MCU
      • Ambiq Apollo4 family of SoCs
      • Ambiq Apollo510
      • Arducam Pico4ML TinyML Dev Kit
      • Arduino Nano 33 BLE Sense
      • Arduino Nicla Sense ME
      • Arduino Nicla Vision
      • Arduino Portenta H7
      • Blues Wireless Swan
      • Espressif ESP-EYE
      • Himax WE-I Plus
      • Infineon CY8CKIT-062-BLE Pioneer Kit
      • Infineon CY8CKIT-062S2 Pioneer Kit
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
      • Open MV Cam H7 Plus
      • Particle Photon 2
      • Particle Boron
      • RAKwireless WisBlock
      • Raspberry Pi RP2040
      • Renesas CK-RA6M5 Cloud Kit
      • Renesas EK-RA8D1
      • Seeed Wio Terminal
      • Seeed XIAO nRF52840 Sense
      • Seeed XIAO ESP32 S3 Sense
      • SiLabs Thunderboard Sense 2
      • Sony's Spresense
      • ST B-L475E-IOT01A
      • TI CC1352P Launchpad
    • MCU + AI accelerators
      • Alif Ensemble
      • Arduino Nicla Voice
      • Avnet RASynBoard
      • Seeed Grove - Vision AI Module
      • Seeed Grove Vision AI Module V2 (WiseEye2)
      • Himax WiseEye2 Module and ISM Devboard
      • SiLabs xG24 Dev Kit
      • STMicroelectronics STM32N6570-DK
      • Synaptics Katana EVK
      • Syntiant Tiny ML Board
    • CPU
      • macOS
      • Linux x86_64
      • Raspberry Pi 4
      • Raspberry Pi 5
      • Texas Instruments SK-AM62
      • Microchip SAMA7G54
      • Renesas RZ/G2L
    • CPU + AI accelerators
      • AVNET RZBoard V2L
      • BrainChip AKD1000
      • i.MX 8M Plus EVK
      • Digi ConnectCore 93 Development Kit
      • MemryX MX3
      • MistyWest MistySOM RZ/V2L
      • Qualcomm Dragonwing RB3 Gen 2 Dev Kit
      • Renesas RZ/V2L
      • Renesas RZ/V2H
      • IMDT RZ/V2H
      • Texas Instruments SK-TDA4VM
      • Texas Instruments SK-AM62A-LP
      • Texas Instruments SK-AM68A
      • Thundercomm Rubik Pi 3
    • GPU
      • Advantech ICAM-540
      • NVIDIA Jetson
      • Seeed reComputer Jetson
    • Mobile phone
    • Porting guide
  • Integrations
    • Arduino Machine Learning Tools
    • AWS IoT Greengrass
    • Embedded IDEs - Open-CMSIS
    • NVIDIA Omniverse
    • Scailable
    • Weights & Biases
  • Tips & Tricks
    • Combining impulses
    • Increasing model performance
    • Optimizing compute time
    • Inference performance metrics
  • Concepts
    • Glossary
    • Course: Edge AI Fundamentals
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • Data engineering
      • Audio feature extraction
      • Motion feature extraction
    • Machine learning
      • Data augmentation
      • Evaluation metrics
      • Neural networks
        • Layers
        • Activation functions
        • Loss functions
        • Optimizers
          • Learned optimizer (VeLO)
        • Epochs
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Example use cases
  • Model architecture
  • Input layer
  • Reshape layers
  • Convolutional branches
  • Output layers
  • Keras model
  • Extending the model architecture
  • Conclusion

Was this helpful?

Export as PDF
  1. Tutorials
  2. Machine learning

Classification with multiple 2D input features

PreviousMachine learningNextVisualize neural networks decisions with Grad-CAM

Last updated 6 months ago

Was this helpful?

Neural networks can work with multiple types of data simultaneously, allowing for sophisticated sensor fusion techniques. Here we demonstrate how to use a single model to perform classification using two separate sets of two-dimensional (2D) input features.

For this tutorial, the two sets of input features are assumed to be spectrograms that are passed through two different convolutional branches of a neural network. The two branches of the network are then combined and passed through a final dense output layer for classification. In the general case, however, there could be more than two branches and the input features could represent different sensor data, channels, or outputs from feature extractors.

This example is for when you would like to pass sets of input features to independent branches of a neural network and then combine the results for a final classification.

If you plan on passing all input features through a fully connected network, then these steps are unnecessary; Edge Impulse automatically concatenates output features from processing blocks and learning blocks operate on the concatenated array.

Example use cases

By using this architecture, you can perform sophisticated sensor fusion tasks, potentially improving classification accuracy and robustness compared to single-input models.

This type of model is particularly useful in situations such as:

  • Combining data from different sensor types (e.g. accelerometer and gyroscope)

  • Handling output from multiple feature extractors (e.g. time-domain and frequency-domain features)

  • Analyzing data from sensors in different locations

Model architecture

The architecture in this tutorial consists of separating the model input into two sets of 2D input features (input layer and reshape layers), passing them through independent convolutional branches, and then combining the results for classification (concatenate layer and dense layer). See below for additional details.

Input layer

The input layer accepts a one-dimensional (1D) input of length input_length. The input_length argument is available if you are using the pre-built by Edge Impulse and modifying them through . By default, Edge Impulse flattens the output of all before passing them to the learning block, so the shape is a 1D array.

Reshape layers

The model input is first split into two halves and then reshaped back into 2D formats. In this example, we assumed spectrogram inputs with 50 columns (time frames) each. We calculated the number of rows based on the number of columns and channels, then used the row and column information for the reshape layer.

Convolutional branches

Each half of the input goes through its own convolutional branch that contains multiple layers:

  • Conv2D layers (8 and 16 filters)

  • MaxPooling2D layers for downsampling

  • Dropout layers for regularization

  • Flatten layer to prepare for concatenation

Output layers

Finally, the outputs of the two independent branches are combined with a concatenation layer. This combined output is then passed through a final dense layer with a softmax activation to perform classification.

Keras model

import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, Permute, ReLU, Softmax, Concatenate, Input
from tensorflow.keras.optimizers.legacy import Adam
from tensorflow.keras.callbacks import EarlyStopping

EPOCHS = args.epochs or 50
LEARNING_RATE = args.learning_rate or 0.0005
# If True, non-deterministic functions (e.g. shuffling batches) are not used.
# This is False by default.
ENSURE_DETERMINISM = args.ensure_determinism
# this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself
BATCH_SIZE = args.batch_size or 32
if not ENSURE_DETERMINISM:
    train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4)
train_dataset=train_dataset.batch(BATCH_SIZE, drop_remainder=False)
validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False)

channels = 1
columns = 50
rows = input_length // (columns * channels)

# Input layer
input_layer = Input(shape=(input_length, ))

# Split the input into two halves
half_length = input_length // 2
# First half
first_half = Reshape((rows // 2, columns, channels))(input_layer[:, :half_length])
branch1 = Conv2D(8, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')(first_half)
branch1 = MaxPooling2D(pool_size=2, strides=2, padding='same')(branch1)
branch1 = Dropout(0.5)(branch1)
branch1 = Conv2D(16, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')(branch1)
branch1 = MaxPooling2D(pool_size=2, strides=2, padding='same')(branch1)
branch1 = Dropout(0.5)(branch1)
branch1 = Flatten()(branch1)

# Second half
second_half = Reshape((rows // 2, columns, channels))(input_layer[:, half_length:])
branch2 = Conv2D(8, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')(second_half)
branch2 = MaxPooling2D(pool_size=2, strides=2, padding='same')(branch2)
branch2 = Dropout(0.5)(branch2)
branch2 = Conv2D(16, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')(branch2)
branch2 = MaxPooling2D(pool_size=2, strides=2, padding='same')(branch2)
branch2 = Dropout(0.5)(branch2)
branch2 = Flatten()(branch2)

# Concatenate the outputs of both branches
merged = Concatenate()([branch1, branch2])

# Final dense layer
output_layer = Dense(classes, name='y_pred', activation='softmax')(merged)

# Create model
model = Model(inputs=input_layer, outputs=output_layer)

# this controls the learning rate
opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999)
callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM))
# Early stop
callbacks.append(EarlyStopping(patience=3))

# train the neural network
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks)

# Use this flag to disable per-channel quantization for a model.
# This can reduce RAM usage for convolutional models, but may have
# an impact on accuracy.
disable_per_channel_quantization = False

Extending the model architecture

To extend this model architecture to handle more inputs, you can:

  1. Split the input into more sections (e.g. thirds or quarters instead of halves).

  2. Create additional convolutional branches for each new input section.

  3. Include the new branches in the concatenation step before the final dense layer.

Conclusion

The architecture defined in this tutorial allows the model to process two separate sets of 2D input features independently before combining them for a final classification. Each branch can learn model parameters specific to its input, which can be particularly useful when dealing with different types of sensor data or feature extractors.

The following code snippet can be copied and pasted into a using the expert mode feature within Studio.

learning blocks
expert mode
processing blocks
classification learning block