LogoLogo
HomeDocsAPI & SDKsProjectsForumStudio
  • Welcome
    • Featured Machine Learning Projects
      • Getting Started with the Edge Impulse Nvidia TAO Pipeline - Renesas EK-RA8D1
      • Smart City Traffic Analysis - NVIDIA TAO + Jetson Orin Nano
      • ROS 2 Pick and Place System - Arduino Braccio++ Robotic Arm and Luxonis OAK-D
      • Optimize a cloud-based Visual Anomaly Detection Model for Edge Deployments
      • Rooftop Ice Detection with Things Network Visualization - Nvidia Omniverse Replicator
      • Surgery Inventory Object Detection - Synthetic Data - Nvidia Omniverse Replicator
      • NVIDIA Omniverse - Synthetic Data Generation For Edge Impulse Projects
      • Community Guide – Using Edge Impulse with Nvidia DeepStream
      • Computer Vision Object Counting - Avnet RZBoard V2L
      • Gesture Appliances Control with Pose Detection - BrainChip AKD1000
      • Counting for Inspection and Quality Control - Nvidia Jetson Nano (TensorRT)
      • High-resolution, High-speed Object Counting - Nvidia Jetson Nano (TensorRT)
    • Prototype and Concept Projects
      • Renesas CK-RA6M5 Cloud Kit - Getting Started with Machine Learning
      • TI CC1352P Launchpad - Getting Started with Machine Learning
      • OpenMV Cam RT1062 - Getting Started with Machine Learning
      • Getting Started with Edge Impulse Experiments
  • Computer Vision Projects
    • Workplace Organizer - Nvidia Jetson Nano
    • Recyclable Materials Sorter - Nvidia Jetson Nano
    • Analog Meter Reading - Arduino Nicla Vision
    • Creating Synthetic Data with Nvidia Omniverse Replicator
    • SonicSight AR - Sound Classification with Feedback on an Augmented Reality Display
    • Traffic Monitoring - Brainchip Akida
    • Multi-camera Video Stream Inference - Brainchip Akida
    • Industrial Inspection Line - Brainchip Akida
    • X-Ray Classification and Analysis - Brainchip Akida
    • Inventory Stock Tracker - FOMO - BrainChip Akida
    • Container Counting - Arduino Nicla Vision
    • Smart Smoke Alarm - Arduino Nano 33
    • Shield Bot Autonomous Security Robot
    • Cyclist Blind Spot Detection - Himax WE-I Plus
    • IV Drip Fluid-Level Monitoring - Arduino Portenta H7
    • Worker PPE Safety Monitoring - Nvidia Jetson Nano
    • Delivered Package Detection - ESP-EYE
    • Bean Leaf Disease Classification - Sony Spresense
    • Oil Tank Measurement Using Computer Vision - Sony Spresense
    • Object Counting for Smart Industries - Raspberry Pi
    • Smart Cashier with FOMO - Raspberry Pi
    • PCB Defect Detection with Computer Vision - Raspberry Pi
    • Bicycle Counting - Sony Spresense
    • Counting Eggs with Computer Vision - OpenMV Cam H7
    • Elevator Passenger Counting - Arduino Nicla Vision
    • ESD Protection using Computer Vision - Seeed ReComputer
    • Solar Panel Defect Detection - Arduino Portenta H7
    • Label Defect Detection - Raspberry Pi
    • Dials and Knob Monitoring with Computer Vision - Raspberry Pi
    • Digital Character Recognition on Electric Meter System - OpenMV Cam H7
    • Corrosion Detection with Computer Vision - Seeed reTerminal
    • Inventory Management with Computer Vision - Raspberry Pi
    • Monitoring Retail Checkout Lines with Computer Vision - Renesas RZ/V2L
    • Counting Retail Inventory with Computer Vision - Renesas RZ/V2L
    • Pose Detection - Renesas RZ/V2L
    • Product Quality Inspection - Renesas RZ/V2L
    • Smart Grocery Cart Using Computer Vision - OpenMV Cam H7
    • Driver Drowsiness Detection With FOMO - Arduino Nicla Vision
    • Gastroscopic Image Processing - OpenMV Cam H7
    • Pharmaceutical Pill Quality Control and Defect Detection
    • Deter Shoplifting with Computer Vision - Texas Instruments TDA4VM
    • Smart Factory Prototype - Texas Instruments TDA4VM
    • Correct Posture Detection and Enforcement - Texas Instruments TDA4VM
    • Visual Anomaly Detection with FOMO-AD - Texas Instruments TDA4VM
    • Surface Crack Detection and Localization - Texas Instruments TDA4VM
    • Surface Crack Detection - Seeed reTerminal
    • Retail Image Classification - Nvidia Jetson Nano
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 1
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 2
    • Object Detection and Visualization - Seeed Grove Vision AI Module
    • Bike Rearview Radar - Raspberry Pi
    • Build a Self-Driving RC Vehicle - Arduino Portenta H7 and Computer Vision
    • "Bring Your Own Model" Image Classifier for Wound Identification
    • Acute Lymphoblastic Leukemia Classifier - Nvidia Jetson Nano
    • Hardhat Detection in Industrial Settings - Alif Ensemble E7
    • Motorcycle Helmet Identification and Traffic Light Control - Texas Instruments AM62A
    • Import a Pretrained Model with "Bring Your Own Model" - Texas Instruments AM62A
    • Product Inspection with Visual Anomaly Detection - FOMO-AD - Sony Spresense
    • Visual Anomaly Detection in Fabric using FOMO-AD - Raspberry Pi 5
    • Car Detection and Tracking System for Toll Plazas - Raspberry Pi AI Kit
    • Visual Anomaly Detection - Seeed Grove Vision AI Module V2
    • Object Counting with FOMO - OpenMV Cam RT1062
    • Visitor Heatmap with FOMO Object Detection - Jetson Orin Nano
    • Vehicle Security Camera - Arduino Portenta H7
  • Audio Projects
    • Occupancy Sensing - SiLabs xG24
    • Smart Appliance Control Using Voice Commands - Nordic Thingy:53
    • Glass Window Break Detection - Nordic Thingy:53
    • Illegal Logging Detection - Nordic Thingy:53
    • Illegal Logging Detection - Syntiant TinyML
    • Wearable Cough Sensor and Monitoring - Arduino Nano 33 BLE Sense
    • Collect Data for Keyword Spotting - Raspberry Pi Pico
    • Voice-Activated LED Strip - Raspberry Pi Pico
    • Snoring Detection on a Smart Phone
    • Gunshot Audio Classification - Arduino Nano 33 + Portenta H7
    • AI-Powered Patient Assistance - Arduino Nano 33 BLE Sense
    • Acoustic Pipe Leakage Detection - Arduino Portenta H7
    • Location Identification using Sound - Syntiant TinyML
    • Environmental Noise Classification - Nordic Thingy:53
    • Running Faucet Detection - Seeed XIAO Sense + Blues Cellular
    • Vandalism Detection via Audio Classification - Arduino Nano 33 BLE Sense
    • Predictive Maintenance Using Audio Classification - Arduino Nano 33 BLE Sense
    • Porting an Audio Project from the SiLabs Thunderboard Sense 2 to xG24
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 1
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 2
    • Keyword Spotting - Nordic Thingy:53
    • Detecting Worker Accidents with Audio Classification - Syntiant TinyML
    • Snoring Detection with Syntiant NDP120 Neural Decision Processor - Arduino Nicla Voice
    • Recognize Voice Commands with the Particle Photon 2
    • Voice Controlled Power Plug with Syntiant NDP120 (Nicla Voice)
    • Determining Compressor State with Audio Classification - Avnet RaSynBoard
    • Developing a Voice-Activated Product with Edge Impulse's Synthetic Data Pipeline
    • Enhancing Worker Safety using Synthetic Audio to Create a Dog Bark Classifier
  • Predictive Maintenance and Defect Detection Projects
    • Predictive Maintenance - Nordic Thingy:91
    • Brushless DC Motor Anomaly Detection
    • Industrial Compressor Predictive Maintenance - Nordic Thingy:53
    • Anticipate Power Outages with Machine Learning - Arduino Nano 33 BLE Sense
    • Faulty Lithium-Ion Cell Identification in Battery Packs - Seeed Wio Terminal
    • Weight Scale Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Fluid Leak Detection With a Flowmeter and AI - Seeed Wio Terminal
    • Pipeline Clog Detection with a Flowmeter and AI - Seeed Wio Terminal
    • Refrigerator Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Motor Pump Predictive Maintenance - Infineon PSoC 6 WiFi-BT Pioneer Kit + CN0549
    • BrickML Demo Project - 3D Printer Anomaly Detection
    • Condition Monitoring - Syntiant TinyML Board
    • Predictive Maintenance - Commercial Printer - Sony Spresense + CommonSense
    • Vibration Classification with BrainChip's Akida
    • AI-driven Audio and Thermal HVAC Monitoring - SeeedStudio XIAO ESP32
  • Accelerometer and Activity Projects
    • Arduino x K-Way - Outdoor Activity Tracker
    • Arduino x K-Way - Gesture Recognition for Hiking
    • Arduino x K-Way - TinyML Fall Detection
    • Posture Detection for Worker Safety - SiLabs Thunderboard Sense 2
    • Hand Gesture Recognition - OpenMV Cam H7
    • Arduin-Row, a TinyML Rowing Machine Coach - Arduino Nicla Sense ME
    • Fall Detection using a Transformer Model – Arduino Giga R1 WiFi
    • Bluetooth Fall Detection - Arduino Nano 33 BLE Sense
    • Monitor Packages During Transit with AI - Arduino Nano 33 BLE Sense
    • Smart Baby Swing - Arduino Portenta H7
    • Warehouse Shipment Monitoring - SiLabs Thunderboard Sense 2
    • Gesture Recognition - Bangle.js Smartwatch
    • Gesture Recognition for Patient Communication - SiLabs Thunderboard Sense 2
    • Hospital Bed Occupancy Detection - Arduino Nano 33 BLE Sense
    • Porting a Posture Detection Project from the SiLabs Thunderboard Sense 2 to xG24
    • Porting a Gesture Recognition Project from the SiLabs Thunderboard Sense 2 to xG24
    • Continuous Gait Monitor (Anomaly Detection) - Nordic Thingy:53
    • Classifying Exercise Activities on a BangleJS Smartwatch
  • Air Quality and Environmental Projects
    • Arduino x K-Way - Environmental Asthma Risk Assessment
    • Gas Detection in the Oil and Gas Industry - Nordic Thingy:91
    • Smart HVAC System with a Sony Spresense
    • Smart HVAC System with an Arduino Nicla Vision
    • Indoor CO2 Level Estimation - Arduino Portenta H7
    • Harmful Gases Detection - Arduino Nano 33 BLE Sense
    • Fire Detection Using Sensor Fusion and TinyML - Arduino Nano 33 BLE Sense
    • AI-Assisted Monitoring of Dairy Manufacturing Conditions - Seeed XIAO ESP32C3
    • AI-Assisted Air Quality Monitoring - DFRobot Firebeetle ESP32
    • Air Quality Monitoring with Sipeed Longan Nano - RISC-V Gigadevice
    • Methane Monitoring in Mines - Silabs xG24 Dev Kit
    • Smart Building Ventilation with Environmental Sensor Fusion
    • Sensor Data Fusion with Spresense and CommonSense
    • Water Pollution Detection - Arduino Nano ESP32 + Ultrasonic Scan
    • Fire Detection Using Sensor Fusion - Arduino Nano 33 BLE Sense
  • Novel Sensor Projects
    • 8x8 ToF Gesture Classification - Arduino RP2040 Connect
    • Food Irradiation Dose Detection - DFRobot Beetle ESP32C3
    • Applying EEG Data to Machine Learning, Part 1
    • Applying EEG Data to Machine Learning, Part 2
    • Applying EEG Data to Machine Learning, Part 3
    • Liquid Classification with TinyML - Seeed Wio Terminal + TDS Sensor
    • AI-Assisted Pipeline Diagnostics and Inspection with mmWave Radar
    • Soil Quality Detection Using AI and LoRaWAN - Seeed Sensecap A1101
    • Smart Diaper Prototype - Arduino Nicla Sense ME
    • DIY Smart Glove with Flex Sensors
    • EdgeML Energy Monitoring - Particle Photon 2
    • Wearable for Monitoring Worker Stress using HR/HRV DSP Block - Arduino Portenta
  • Software Integration Demos
    • Azure Machine Learning with Kubernetes Compute and Edge Impulse
    • ROS2 + Edge Impulse, Part 1: Pub/Sub Node in Python
    • ROS2 + Edge Impulse, Part 2: MicroROS
    • Using Hugging Face Datasets in Edge Impulse
    • Using Hugging Face Image Classification Datasets with Edge Impulse
    • Edge Impulse API Usage Sample Application - Jetson Nano Trainer
    • MLOps with Edge Impulse and Azure IoT Edge
    • A Federated Approach to Train and Deploy Machine Learning Models
    • DIY Model Weight Update for Continuous AI Deployments
    • Automate the CI/CD Pipeline of your Models with Edge Impulse and GitHub Actions
    • Deploying Edge Impulse Models on ZEDEDA Cloud Devices
Powered by GitBook
On this page
  • Project Demo
  • Intro
  • Advantages over existing solutions
  • Privacy
  • Hardware, software, tools and services used
  • How it works
  • Edge Impulse
  • Programming Arduino application
  • Nordic nRF Cloud
  • Energy consumption profiling
  • Energy source
  • Electronics work
  • Physical prototype
  • Limitations
  • Future improvements
  • Reception
  • Disclosure

Was this helpful?

Edit on GitHub
Export as PDF
  1. Audio Projects

Wearable Cough Sensor and Monitoring - Arduino Nano 33 BLE Sense

An exploration into using machine learning to better monitor a patient coughing, to improve medical outcomes.

PreviousIllegal Logging Detection - Syntiant TinyMLNextCollect Data for Keyword Spotting - Raspberry Pi Pico

Last updated 1 year ago

Was this helpful?

Created By: Eivind Holt

Public Project Link:

GitHub Repository:

Project Demo

Intro

This wearable device detects and reports user's coughs. This can be useful in treatment of patients suffering from chronic obstructive pulmonary disease, COPD, a group of diseases that cause airflow blockage and breathing-related problems. The increase in number and intensity of coughs can indicate ineffective treatment. Real-time monitoring enables caregivers to intervene at an early stage.

Advantages over existing solutions

Privacy

Existing methods of analyzing audio recordings greatly invades privacy of the patient, caregivers and peers. This proof-of-concept does not store any audio for more than a fraction of a second. This audio buffer never leaves the device, it is constantly being overwritten as soon as the application has determined if the small fragment of audio contains a cough or not. In fact, the hardware used is not capable of streaming audio using the low-energy network in question.

Further, the application is hard-coded to detect coughs or noise. To be able to detect new keywords, for instance "bomb", or "shopping", the device would have to be physically reprogrammed. Firmware Over-the-Air is not currently supported in this project. Each keyword consumes already constrained memory, limiting the practical amount of different keywords to a handful.

Compared to commercial voice assistants, such as Google Nest, Amazon Alexa or Apple Siri on dedicated devices or on smartphone, this device works a bit differently. The aforementioned products are split into two modes: activation and interpretation. Activation runs continuously locally on the device and is limited to recognizing "Hey google" etc. This puts the device in the next mode, interpretation. In this mode an audio recording is made and transmitted to servers to be processed. This opens up for greatly improved speech recognition. It also opens up to secondary use, better know as targeted advertisement. The device in this project only works in the activation mode.

Hardware, software, tools and services used

  • Arduino Nano 33 BLE Sense

  • LiPo battery

  • JSH battery connectors

  • Edge Impulse Studio

  • VS Code/Arduino IDE

  • Nordic Semiconductor nRF Cloud

  • nRF Bluetooth Low Energy sniffer

  • Nordic nRF52840 Dongle

  • Fusion 360

  • 3D printer

  • Qoitech Otii Arc

How it works

Edge Impulse

A model was trained using 394 labeled audio samples of intense coughs, a total of 2 minutes and 34 seconds. An almost equal amount of audio samples of less intense coughs, sneezes, clearing of throat, speech and general sounds was also labeled, 253 samples, 2 minutes and 38 seconds. All samples were captured using the Arduino Nano, positioned at the intended spot for wear.

My coughs lasts around 200 milliseconds. I sampled 10 seconds of repeated coughing with short pauses, then split and trimmed the samples to remove silence.

The model was tested using data set aside and yielded great results. I used EON Tuner in Edge Impulse Studio to find optimal parameters for accuracy, performance and memory consumption.

An Arduino compatible library was built and used to perform continuous interference on an Arduino Nano 33 BLE Sense audio input.

Programming Arduino application

I followed some samples on how to use the generated Arduino libraries from Edge Impulse and how to perform inference on the audio input. If attempting to build my source code, make sure to include the /lib folder. I had to experiment a bit with parameters on the length of the audio window and slices. As each audio sample might start and end in any number of places for a given cough, each piece of audio is analyzed several times, preceeding and following adjoining samples. The results of the inference, the classification, is checked and triggers cough increment if probability is above 50%. A LED is flashed as an indicator.

In short my application defines a custom BLE service, with a characteristic of type unsigned integer, with behaviors Notify, Read and Broadcast. Not very sophisticated, but enough for demonstration. Any connected device will be able to subscribe to updates on the value.

Nordic nRF Cloud

Next I used the nRF Android app on my phone as a gateway between the device and nRF Cloud.

Energy consumption profiling

Energy source

I used lithium polymer batteries for compact size and ease of recharging. I only had spare 500 mAh batteries available, shipping options for assorted batteries by air is limited. To extend battery life I connected two in parallel by soldering 3 JSH female connectors. Warning: This wiring is subjectable to short circuit and is only connected under supervision. This gives twice the capacity while keeping the voltage at the same level.

Electronics work

I made the mistake of assuming I would have to connect more components to the Arduino Nano via a protoboard. On a whim I ordered the Nano with pre-soldered headers. This only took up space and I had to undergo the tedious work of removing the headers by hand using a regular soldering iron. Sacrificing the headers by snipping them every other pin greatly eased the required finger acrobatics.

The only other thing I did was solder a female JSH battery connector to pins VIN and GND. This would serve as my battery connection, and subsequently the device's on/off toggle.

Physical prototype

I wanted to make a prototype for demonstrating the concept for clinicians. It needed to contain and protect the electronics and batteries, while allowing sound waves to reach the microphone. I realized this would complicate making the enclosure watertight and quickly crossed that off the list. I also wanted to make a practical mechanism for securing the device on the wearer.

I used Autodesk Fusion 360 as CAD to design the enclosure. I always start by making rough digital replications of the hardware using calipers to take measurements on a sketch.

This gives the driving constraints and allows me to experiment with different hardware layouts without having to totally scrap alternatives.

While designing I constantly need to take into consideration the manufacturing method, in this case a resin-based SLA 3D printer. When drawing I have to decide on the orientation of the model during printing to avoid complicating overhangs, cupping, hard-to-reach surfaces for removing support material. I also want to reduce the number of parts, to avoid unnecessary post-print work and bad fits.

Completed prints undergo an IPA wash to remove excess resin and finally post cure in a UV-light chamber. What remains is to snip off support material, sand any uneven surfaces and glue together parts. Now the device could finally be assembled and tested.

I ended up with a sort of a badge with a clip and a friction fit lid. It reminds me of a 1960's Star Trek communicator, not the worst thing to be compared against.

Limitations

Battery life is limited to a few days. I am in the process of reimplementing the device using a Neural Decision Processor, NDP, that is able to perform the inference with a fraction of the energy a conventional MCU requires.

I tried to limit audio inference to only perform when the Arduino Nano accelerometer triggers due to some amount of movement (chest movement during a cough). I was disappointed to discover that the interrupt pin on the LSM9DS1 IMU is not connected to the MCU.

You might also have realized that the device will pick up coughs by bystanders, something I discovered when demonstrating the device to a large audience during a conference! Limiting activation to both movement and audio will sort this out.

Future improvements

When demonstrating the device to doctors and nurses I received a great suggestion. A COPD patient that stops taking their daily walk is a great source for concern. My device could be extended to perform monitoring of physical activity using accelerometer data and report aggregated daily activity.

It might be useful to support simple keywords so a patient could log events such as blood in cough, types of pain, self-medication etc.

I plan to move from BLE to LoRaWAN or NB-IoT for transmissions. This way patients won't have to worry about IT administration or infrastructure, it will just work. Please see my other projects at Hackster and element 14 for demonstrations of these lpwan technologies.

Reception

I have had the opportunity to demonstrate the device to clinicians both in person and at expositions and it has received praise, suggestions for further features and use in additional conditions. This project has also spawned several other ideas for wearables in e-health.

Disclosure

Using cough frequency and intensity as and indicator of COPD condition has outside hospital wards using existing technology. The main traditional approach consists of audio recording a patient at ward, then using manual or software based cough counting. While developing this new proof-of-concept no similar approaches were found.

A model was trained to distinguish intense coughs from other sounds. An Arduino Nano 33 BLE Sense was programmed to continuously feed microphone audio into an application. The application then runs inference on small audio fragments to determine the probability of this fragment containing a cough. If it does, a counter is incremented and this is securely advertised using Bluetooth Low-Energy, BLE. An other BLE device, such as a smartphone or a USB-dongle, can be paired with the device and re-transmit the event to a service on the internet. I have used for this purpose. nRF Cloud exposes several APIs (REST web services, MQTT brokers) that enables the events to be integrated with other systems. With this as a basis it's possible to transform the event into an internationally clinically recognizable message that can be routed into an Electronic Medical Record system, EMR. Popular standards include openEHR and HL7 FHIR.

is the leading development platform for machine learning on edge devices and it's free for use by developers. The is some of the best I have experienced in my two decades as a professional developer. I also wish to recommend the book as a practical, project based introduction to TinyML and Edge Impulse. I will highlight some particulars of my application. You may explore my .

I am the only source of the coughs, if this is to be used by anyone else a significantly larger and more diverse dataset is needed. I have found several crowd-sourced , thanks to efforts during the covid pandemic. I started this project by making Python scripts that would filter, massage and convert these samples. The quality of many of the samples were not suitable for my project, many 10-second samples only contained a single, weak cough. Very few were accurately labeled. Due to the amount of work required to trim all of these and to manually label each sample, I decided to produce my own. Labeled datasets of are also readily available.

The samples were split for training (81%) and 19% were put aside for testing. The training samples were used to extract audio features and create a neural network classifier. The NN architecture and parameters were mainly the result of experimentation. and books gave conflicting and outdated advice, but were still useful for understanding the different steps. Edge Impulse Studio is perfect for this type of iterative experimentation, as it replaces a lot of custom tooling with beautiful UI.

The Arduino ecosystem is wonderful for this kind of explorative prototyping. using Visual Studio Code or Arduino IDE/web IDE was a breeze and access to e.g. BLE-APIs was intuitive. You may explore the .

If you are used to RPC or even REST types of communication paradigms, BLE will require a bit of reading and experimentation. The give great explanation of key concepts and sample code to get started. Nordic also have .

I used a in conjunction with nRF Connect for Desktop Bluetooth Low Energy sniffing app for initial BLE development.

I didn't spend a whole lot of time profiling and optimizing this project, as I would be moving to different hardware in the next iteration. Remember, the current implementation is simultaneously buffering audio from the microphone and performing inference. The key to long battery life is 1) energy efficient hardware and 2) as much down time (deep sleep) as possible. I did however make sure it could perform continuous inference for a few days. The is an excellent tool for profiling projects like this. Please see my other projects at Hackster and element 14 for more in-depth tutorials.

The model was printed using a Formlabs 3 SLA 3D printer, with rigid Formlabs Gray v4 resin. The process starts by exporting the models as from Fusion 360. These are imported and arranged for printing using the PreForm software. There are many considerations in arranging the models for optimal print, carefully oriented parts and support material placement can drastically save post-print work, increase strength and surface finish.

I work with research and innovation at . I am a member of Edge Impulse Expert Network. This project was made on my own accord and the views are my own.

proven useful, but impractical to monitor over time
Nordic nRF Cloud
Edge Impulse
documentation
TinyML Cookbook by Gian Marco Iodice
project here
datasets of coughs
environmental audio recordings
Tutorials
Setting up the Arduino Nano for programming
source code here
docs over at Arduino
insightful webinars on BLE
Nordic nRF52840 Dongle
Otii Arc by Qoitech
high definition .stl files
DIPS AS
https://studio.edgeimpulse.com/public/105885/latest
https://github.com/eivholt/cough-monitor
Working prototype
Cough and its importance in COPD, PMC2707150
Sensor data in patient's medical record, DIPS Arena, used in Norwegian hospitals
Edge Impulse Studio data
Edge Impulse Studio data
Creating impulse
Extracting features
Classifier and training performance
nRF Connect for Desktop Bluetooth LE sniffer. 5 coughs are reported.
Phone acts as gateway between device and nRF Cloud
Otii Arc
Batteries connected in parallel
Ready for assembly
Fusion 360 cross-section
PreForm
Ever expanding IoT lab. Photo: Sebastian Loraas
UV curing
Clothes clip
Action shot
Eagerly awaiting to enter the stage at DIPS Forum 2022. Photo: Marthe Mølstre