LogoLogo
HomeDocsAPI & SDKsProjectsForumStudio
  • Welcome
    • Featured Machine Learning Projects
      • Getting Started with the Edge Impulse Nvidia TAO Pipeline - Renesas EK-RA8D1
      • Smart City Traffic Analysis - NVIDIA TAO + Jetson Orin Nano
      • ROS 2 Pick and Place System - Arduino Braccio++ Robotic Arm and Luxonis OAK-D
      • Optimize a cloud-based Visual Anomaly Detection Model for Edge Deployments
      • Rooftop Ice Detection with Things Network Visualization - Nvidia Omniverse Replicator
      • Surgery Inventory Object Detection - Synthetic Data - Nvidia Omniverse Replicator
      • NVIDIA Omniverse - Synthetic Data Generation For Edge Impulse Projects
      • Community Guide – Using Edge Impulse with Nvidia DeepStream
      • Computer Vision Object Counting - Avnet RZBoard V2L
      • Gesture Appliances Control with Pose Detection - BrainChip AKD1000
      • Counting for Inspection and Quality Control - Nvidia Jetson Nano (TensorRT)
      • High-resolution, High-speed Object Counting - Nvidia Jetson Nano (TensorRT)
    • Prototype and Concept Projects
      • Renesas CK-RA6M5 Cloud Kit - Getting Started with Machine Learning
      • TI CC1352P Launchpad - Getting Started with Machine Learning
      • OpenMV Cam RT1062 - Getting Started with Machine Learning
      • Getting Started with Edge Impulse Experiments
  • Computer Vision Projects
    • Workplace Organizer - Nvidia Jetson Nano
    • Recyclable Materials Sorter - Nvidia Jetson Nano
    • Analog Meter Reading - Arduino Nicla Vision
    • Creating Synthetic Data with Nvidia Omniverse Replicator
    • SonicSight AR - Sound Classification with Feedback on an Augmented Reality Display
    • Traffic Monitoring - Brainchip Akida
    • Multi-camera Video Stream Inference - Brainchip Akida
    • Industrial Inspection Line - Brainchip Akida
    • X-Ray Classification and Analysis - Brainchip Akida
    • Inventory Stock Tracker - FOMO - BrainChip Akida
    • Container Counting - Arduino Nicla Vision
    • Smart Smoke Alarm - Arduino Nano 33
    • Shield Bot Autonomous Security Robot
    • Cyclist Blind Spot Detection - Himax WE-I Plus
    • IV Drip Fluid-Level Monitoring - Arduino Portenta H7
    • Worker PPE Safety Monitoring - Nvidia Jetson Nano
    • Delivered Package Detection - ESP-EYE
    • Bean Leaf Disease Classification - Sony Spresense
    • Oil Tank Measurement Using Computer Vision - Sony Spresense
    • Object Counting for Smart Industries - Raspberry Pi
    • Smart Cashier with FOMO - Raspberry Pi
    • PCB Defect Detection with Computer Vision - Raspberry Pi
    • Bicycle Counting - Sony Spresense
    • Counting Eggs with Computer Vision - OpenMV Cam H7
    • Elevator Passenger Counting - Arduino Nicla Vision
    • ESD Protection using Computer Vision - Seeed ReComputer
    • Solar Panel Defect Detection - Arduino Portenta H7
    • Label Defect Detection - Raspberry Pi
    • Dials and Knob Monitoring with Computer Vision - Raspberry Pi
    • Digital Character Recognition on Electric Meter System - OpenMV Cam H7
    • Corrosion Detection with Computer Vision - Seeed reTerminal
    • Inventory Management with Computer Vision - Raspberry Pi
    • Monitoring Retail Checkout Lines with Computer Vision - Renesas RZ/V2L
    • Counting Retail Inventory with Computer Vision - Renesas RZ/V2L
    • Pose Detection - Renesas RZ/V2L
    • Product Quality Inspection - Renesas RZ/V2L
    • Smart Grocery Cart Using Computer Vision - OpenMV Cam H7
    • Driver Drowsiness Detection With FOMO - Arduino Nicla Vision
    • Gastroscopic Image Processing - OpenMV Cam H7
    • Pharmaceutical Pill Quality Control and Defect Detection
    • Deter Shoplifting with Computer Vision - Texas Instruments TDA4VM
    • Smart Factory Prototype - Texas Instruments TDA4VM
    • Correct Posture Detection and Enforcement - Texas Instruments TDA4VM
    • Visual Anomaly Detection with FOMO-AD - Texas Instruments TDA4VM
    • Surface Crack Detection and Localization - Texas Instruments TDA4VM
    • Surface Crack Detection - Seeed reTerminal
    • Retail Image Classification - Nvidia Jetson Nano
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 1
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 2
    • Object Detection and Visualization - Seeed Grove Vision AI Module
    • Bike Rearview Radar - Raspberry Pi
    • Build a Self-Driving RC Vehicle - Arduino Portenta H7 and Computer Vision
    • "Bring Your Own Model" Image Classifier for Wound Identification
    • Acute Lymphoblastic Leukemia Classifier - Nvidia Jetson Nano
    • Hardhat Detection in Industrial Settings - Alif Ensemble E7
    • Motorcycle Helmet Identification and Traffic Light Control - Texas Instruments AM62A
    • Import a Pretrained Model with "Bring Your Own Model" - Texas Instruments AM62A
    • Product Inspection with Visual Anomaly Detection - FOMO-AD - Sony Spresense
    • Visual Anomaly Detection in Fabric using FOMO-AD - Raspberry Pi 5
    • Car Detection and Tracking System for Toll Plazas - Raspberry Pi AI Kit
    • Visual Anomaly Detection - Seeed Grove Vision AI Module V2
    • Object Counting with FOMO - OpenMV Cam RT1062
    • Visitor Heatmap with FOMO Object Detection - Jetson Orin Nano
    • Vehicle Security Camera - Arduino Portenta H7
  • Audio Projects
    • Occupancy Sensing - SiLabs xG24
    • Smart Appliance Control Using Voice Commands - Nordic Thingy:53
    • Glass Window Break Detection - Nordic Thingy:53
    • Illegal Logging Detection - Nordic Thingy:53
    • Illegal Logging Detection - Syntiant TinyML
    • Wearable Cough Sensor and Monitoring - Arduino Nano 33 BLE Sense
    • Collect Data for Keyword Spotting - Raspberry Pi Pico
    • Voice-Activated LED Strip - Raspberry Pi Pico
    • Snoring Detection on a Smart Phone
    • Gunshot Audio Classification - Arduino Nano 33 + Portenta H7
    • AI-Powered Patient Assistance - Arduino Nano 33 BLE Sense
    • Acoustic Pipe Leakage Detection - Arduino Portenta H7
    • Location Identification using Sound - Syntiant TinyML
    • Environmental Noise Classification - Nordic Thingy:53
    • Running Faucet Detection - Seeed XIAO Sense + Blues Cellular
    • Vandalism Detection via Audio Classification - Arduino Nano 33 BLE Sense
    • Predictive Maintenance Using Audio Classification - Arduino Nano 33 BLE Sense
    • Porting an Audio Project from the SiLabs Thunderboard Sense 2 to xG24
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 1
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 2
    • Keyword Spotting - Nordic Thingy:53
    • Detecting Worker Accidents with Audio Classification - Syntiant TinyML
    • Snoring Detection with Syntiant NDP120 Neural Decision Processor - Arduino Nicla Voice
    • Recognize Voice Commands with the Particle Photon 2
    • Voice Controlled Power Plug with Syntiant NDP120 (Nicla Voice)
    • Determining Compressor State with Audio Classification - Avnet RaSynBoard
    • Developing a Voice-Activated Product with Edge Impulse's Synthetic Data Pipeline
    • Enhancing Worker Safety using Synthetic Audio to Create a Dog Bark Classifier
  • Predictive Maintenance and Defect Detection Projects
    • Predictive Maintenance - Nordic Thingy:91
    • Brushless DC Motor Anomaly Detection
    • Industrial Compressor Predictive Maintenance - Nordic Thingy:53
    • Anticipate Power Outages with Machine Learning - Arduino Nano 33 BLE Sense
    • Faulty Lithium-Ion Cell Identification in Battery Packs - Seeed Wio Terminal
    • Weight Scale Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Fluid Leak Detection With a Flowmeter and AI - Seeed Wio Terminal
    • Pipeline Clog Detection with a Flowmeter and AI - Seeed Wio Terminal
    • Refrigerator Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Motor Pump Predictive Maintenance - Infineon PSoC 6 WiFi-BT Pioneer Kit + CN0549
    • BrickML Demo Project - 3D Printer Anomaly Detection
    • Condition Monitoring - Syntiant TinyML Board
    • Predictive Maintenance - Commercial Printer - Sony Spresense + CommonSense
    • Vibration Classification with BrainChip's Akida
    • AI-driven Audio and Thermal HVAC Monitoring - SeeedStudio XIAO ESP32
  • Accelerometer and Activity Projects
    • Arduino x K-Way - Outdoor Activity Tracker
    • Arduino x K-Way - Gesture Recognition for Hiking
    • Arduino x K-Way - TinyML Fall Detection
    • Posture Detection for Worker Safety - SiLabs Thunderboard Sense 2
    • Hand Gesture Recognition - OpenMV Cam H7
    • Arduin-Row, a TinyML Rowing Machine Coach - Arduino Nicla Sense ME
    • Fall Detection using a Transformer Model – Arduino Giga R1 WiFi
    • Bluetooth Fall Detection - Arduino Nano 33 BLE Sense
    • Monitor Packages During Transit with AI - Arduino Nano 33 BLE Sense
    • Smart Baby Swing - Arduino Portenta H7
    • Warehouse Shipment Monitoring - SiLabs Thunderboard Sense 2
    • Gesture Recognition - Bangle.js Smartwatch
    • Gesture Recognition for Patient Communication - SiLabs Thunderboard Sense 2
    • Hospital Bed Occupancy Detection - Arduino Nano 33 BLE Sense
    • Porting a Posture Detection Project from the SiLabs Thunderboard Sense 2 to xG24
    • Porting a Gesture Recognition Project from the SiLabs Thunderboard Sense 2 to xG24
    • Continuous Gait Monitor (Anomaly Detection) - Nordic Thingy:53
    • Classifying Exercise Activities on a BangleJS Smartwatch
  • Air Quality and Environmental Projects
    • Arduino x K-Way - Environmental Asthma Risk Assessment
    • Gas Detection in the Oil and Gas Industry - Nordic Thingy:91
    • Smart HVAC System with a Sony Spresense
    • Smart HVAC System with an Arduino Nicla Vision
    • Indoor CO2 Level Estimation - Arduino Portenta H7
    • Harmful Gases Detection - Arduino Nano 33 BLE Sense
    • Fire Detection Using Sensor Fusion and TinyML - Arduino Nano 33 BLE Sense
    • AI-Assisted Monitoring of Dairy Manufacturing Conditions - Seeed XIAO ESP32C3
    • AI-Assisted Air Quality Monitoring - DFRobot Firebeetle ESP32
    • Air Quality Monitoring with Sipeed Longan Nano - RISC-V Gigadevice
    • Methane Monitoring in Mines - Silabs xG24 Dev Kit
    • Smart Building Ventilation with Environmental Sensor Fusion
    • Sensor Data Fusion with Spresense and CommonSense
    • Water Pollution Detection - Arduino Nano ESP32 + Ultrasonic Scan
    • Fire Detection Using Sensor Fusion - Arduino Nano 33 BLE Sense
  • Novel Sensor Projects
    • 8x8 ToF Gesture Classification - Arduino RP2040 Connect
    • Food Irradiation Dose Detection - DFRobot Beetle ESP32C3
    • Applying EEG Data to Machine Learning, Part 1
    • Applying EEG Data to Machine Learning, Part 2
    • Applying EEG Data to Machine Learning, Part 3
    • Liquid Classification with TinyML - Seeed Wio Terminal + TDS Sensor
    • AI-Assisted Pipeline Diagnostics and Inspection with mmWave Radar
    • Soil Quality Detection Using AI and LoRaWAN - Seeed Sensecap A1101
    • Smart Diaper Prototype - Arduino Nicla Sense ME
    • DIY Smart Glove with Flex Sensors
    • EdgeML Energy Monitoring - Particle Photon 2
    • Wearable for Monitoring Worker Stress using HR/HRV DSP Block - Arduino Portenta
  • Software Integration Demos
    • Azure Machine Learning with Kubernetes Compute and Edge Impulse
    • ROS2 + Edge Impulse, Part 1: Pub/Sub Node in Python
    • ROS2 + Edge Impulse, Part 2: MicroROS
    • Using Hugging Face Datasets in Edge Impulse
    • Using Hugging Face Image Classification Datasets with Edge Impulse
    • Edge Impulse API Usage Sample Application - Jetson Nano Trainer
    • MLOps with Edge Impulse and Azure IoT Edge
    • A Federated Approach to Train and Deploy Machine Learning Models
    • DIY Model Weight Update for Continuous AI Deployments
    • Automate the CI/CD Pipeline of your Models with Edge Impulse and GitHub Actions
    • Deploying Edge Impulse Models on ZEDEDA Cloud Devices
Powered by GitBook
On this page
  • Introduction
  • Hardware
  • Platform
  • Software
  • Getting Started
  • Arduino Nano RPI2040 Connect
  • Edge Impulse
  • Create Edge Impulse Project
  • Connect Your Device
  • Collect Data
  • Create Impulse
  • Spectral Analysis
  • Classification
  • Feature Generation
  • Training
  • Testing
  • Deployment
  • EON Tuner
  • Experiment 2
  • Experiment 3
  • Conclusion

Was this helpful?

Edit on GitHub
Export as PDF
  1. Welcome
  2. Prototype and Concept Projects

Getting Started with Edge Impulse Experiments

Discover how to use the Experiments feature to test and improve machine learning model accuracy.

PreviousOpenMV Cam RT1062 - Getting Started with Machine LearningNextComputer Vision Projects

Last updated 4 months ago

Was this helpful?

Created By:

Public Project Link:

Introduction

Edge Impulse Experiments are a powerful new feature that allows users to run multiple active Impulses within a single project. This enables seamless experimentation with various model configurations on the same dataset, offering a more efficient way to compare results.

The updated interface includes a new "Experiments" section, which centralizes Impulse management and integrates the EON Tuner for enhanced trial handling. Along with API enhancements and streamlined processes, these changes significantly accelerate development and improve project organization, making it easier to transition from data collection to deployment.

This project provides a walk through of how to use Experiments, along with a tutorial that will help you get started with Edge Impulse Experiments.

Hardware

Platform

Software

Getting Started

Arduino Nano RPI2040 Connect

The Arduino Nano RP2040 Connect is a highly versatile development board, bringing the power of the Raspberry Pi RP2040 microcontroller to the compact Nano form factor. Equipped with dual-core 32-bit Arm Cortex-M0+ processors, it enables seamless creation of IoT projects with built-in Wi-Fi and Bluetooth support via the U-blox Nina W102 module. The board includes an accelerometer, gyroscope, RGB LED, and omnidirectional microphone, making it ideal for real-time data collection and embedded AI applications.

The Nano RP2040 Connect is fully compatible with the Arduino Cloud platform, allowing users to rapidly prototype IoT solutions. It also supports MicroPython for those who prefer Python for programming. With a clock speed of 133 MHz, the board is well-suited for machine learning tasks, offering support for frameworks like TinyML and TensorFlow Lite. Additionally, its 6-axis IMU and temperature sensor expand the board's capability for advanced real-world applications.

Edge Impulse

Create Edge Impulse Project

Once your project is created, you will see the project dashboard which will show you new additions to the platform.

Connect Your Device

Next you need to connect your device to the Edge Impulse platform. Ensuring you have the Nano connected to your computer, open a command line or terminal and use the following command:

edge-impulse-daemon

You will be prompted for your Edge Impulse login details to proceed. Once authenticated you will need to choose the COM port that your device is connected to, and then select the Edge Impulse project you want to connect your device to.

If you now head over to your project and go the Devices tab, you will see your device is now connected.

Collect Data

Now that your device is connected to Edge Impulse, it is time to collect some data. Head over to the Data aquisition tab and select the RPI2040.

First we will create the normal data. This data will represent when a machine is running normally with no abnormal vibrations. Select the Intertial sensor and use Normal as the label. Next record about 3 minutes data, collected in 10 second samples from the device.

Next we will collect some Vibrations data. Change the label to Vibrations and record 3 minutes more of samples, but this time shake the Arduino around while the samples are being recorded.

You should now have about 6 minutes of data. Note that at this point the data is not split into Training and Testing groups.

Head to the project dashboard and scroll to the Danger Zone at the bottom. Click on the Perform train/test split button to split the data.

Back on the Data aquisition tab, you will now see that the data has been split.

Create Impulse

Now it is time to create your Impulse. Head over to the Create Impulse tab and you should see the configuration for your Nano RPI2040. You can accept the defaults here.

Spectral Analysis

First we will use the Spectral Analysis Processing block. Spectral Analysis is ideal for examining repetitive movements, particularly using accelerometer data. This tool breaks down signals to reveal their frequency and power patterns over time.

Click Add to add the Spectral Analysis Processing block to your Impulse.

Classification

For the Learning block, we will use Classification to classify between Normal and Vibrations. Click Add to add the Classification block to your Impulse.

Next click Save Impulse.

Feature Generation

Now we will generate the features that the AI model will use to learn. Head over to the Spectral Features tab and click on Autotune parameters. An autotune job will start and you will see the output on the right hand side of the UI.

Once the job is complete click Save parameters. You will be redirected to the Generate features tab.

A feature generation job will start, and once finished you will see the features on the right hand side. The features should be nicely clustered, if you notice features that are not clustered correctly you can click on them, review the samples and update your dataset or settings to fix.

Training

Now it is time to train our model. Head over to the Classifier tab, leave the default settings intact, and click on Save and train.

A training job will start, and once completed you will see the results on the right hand side of the UI.

Testing

If you now head over to the Model testing tab, you will be able to use your newly trained model on the Test data that was set aside. The Test data was not shown to the model during training, so this will help to evaluate how well the model performs on unseen data.

The testing process will start and you will see the results once complete.

If you head to the Experiments tab, you will see that you now have your first Experiment listed.

Deployment

You are now able to deploy your model to your Arduino. Head over to the Deployment tab and search for Arduino, then follow the steps provided to you to deploy the model to your device.

As this tutorial is specifically related to Experiments, we will continue straight to EON Tuner and creating our next Experiment.

EON Tuner

The EON™ Tuner simultaneously tests multiple model architectures, chosen based on your device and latency needs, to identify the best one for your application. The tuning process can take a while, but you can monitor its progress at any point during the search.

On the Experiments tab, select EON Tuner. For the Search space configuration select Classification in the Usecase templates drop down, then click Start tuning to run.

At this point, it is time to grab a coffee and put your feet up, as this will take some time to complete.

Experiment 2

If at any time during the EON tuning process, you see a configuration you would like to try, you can simply click the Add button for that configuration.

Here we see a configuration that has a considerable reduction for latency, RAM, and ROM, so we will use this configuration for our next Experiment.

The platform will create the blocks for your new Impulse and add the features automatically for you. If you head back to the Experiments tab you will now see your new model waiting for you to test or deploy.

Experiment 3

While the EON Tuner will help identify the best architectures and configuration automatically, you can also manually add a new Experiment in order to go through the blocks and neural network setup process again, by simply clicking on the "Create new impulse" button on the Experiments page.

At this point, once you have trained yet a third model and tested it's results, you now have 3 different models to choose from, and can select the best one to deploy to your device. In the Professional and Enterprise tiers, you can continue to evaluate and iterate with even more Experiments.

Conclusion

In this tutorial, we demonstrated how to build a defect detection system with Edge Impulse and the Arduino Nano RP2040, and how to leverage the EON Tuner to optimize your model. From there, we built a second and third model with the new Experiments feature in Edge Impulse to allow us to evaluate different options and results. With this, you can easily refine and enhance your models, showcasing the power and simplicity of Edge Impulse's new Experiments feature for continuous improvement in machine learning projects.

Arduino Nano RPI2040 Connect

Edge Impulse

Edge Impulse CLI

Arduino CLI

Arduino IDE 2.2.1

To begin working with the Edge Impulse platform and the Nano RPI2040 Connect, follow to connect your device.

Now it's time to create your Edge Impulse project. Head over to , log in, and create your new project.

Edge Impulse offers Experiments to all users, with the Community tier allowing up to three simultaneous Experiments. Users on the Professional Plan and Enterprise tiers enjoy unlimited access to Experiments. You can explore all the platform's advanced features by signing up for an .

More Info
Visit
Download
Download
Download
this tutorial
Edge Impulse
Enterprise Trial
Adam Milton-Barker
https://studio.edgeimpulse.com/public/521263/latest
Arduino Nano RPI2040 Connect
Arduino Nano RPI2040 Connect Pins
Create Edge Impulse Project
Create Edge Impulse Project Dashboard
Edge Impulse Project Device Connection
Edge Impulse Project Device Connected
Edge Impulse Project Collect Data
Edge Impulse Project Collect Normal Data
Edge Impulse Project Collect Vibrations Data
Edge Impulse Project Collected Data
Edge Impulse Project Collected Data Split
Edge Impulse Project Collected Data Split
Edge Impulse Project Create Impulse
Edge Impulse Project Create Spectral Analysis Impulse
Edge Impulse Project Create Spectral Analysis Classification Impulse
Edge Impulse Project Spectral Analysis Classification Features
Edge Impulse Project Spectral Analysis Classification Features
Edge Impulse Project Spectral Analysis Classification Features
Edge Impulse Project Spectral Analysis Classification Training
Edge Impulse Project Spectral Analysis Classification Testing
Edge Impulse Project First Experiment
Edge Impulse Project Deployment
Edge Impulse Project EON Tuner
Edge Impulse Project EON Tuner
Edge Impulse Project EON Tuner
Edge Impulse Project EON Tuner
Edge Impulse Project Experiment 2