LogoLogo
HomeDocsAPI & SDKsProjectsForumStudio
  • Welcome
    • Featured Machine Learning Projects
      • Getting Started with the Edge Impulse Nvidia TAO Pipeline - Renesas EK-RA8D1
      • Smart City Traffic Analysis - NVIDIA TAO + Jetson Orin Nano
      • ROS 2 Pick and Place System - Arduino Braccio++ Robotic Arm and Luxonis OAK-D
      • Optimize a cloud-based Visual Anomaly Detection Model for Edge Deployments
      • Rooftop Ice Detection with Things Network Visualization - Nvidia Omniverse Replicator
      • Surgery Inventory Object Detection - Synthetic Data - Nvidia Omniverse Replicator
      • NVIDIA Omniverse - Synthetic Data Generation For Edge Impulse Projects
      • Community Guide – Using Edge Impulse with Nvidia DeepStream
      • Computer Vision Object Counting - Avnet RZBoard V2L
      • Gesture Appliances Control with Pose Detection - BrainChip AKD1000
      • Counting for Inspection and Quality Control - Nvidia Jetson Nano (TensorRT)
      • High-resolution, High-speed Object Counting - Nvidia Jetson Nano (TensorRT)
    • Prototype and Concept Projects
      • Renesas CK-RA6M5 Cloud Kit - Getting Started with Machine Learning
      • TI CC1352P Launchpad - Getting Started with Machine Learning
      • OpenMV Cam RT1062 - Getting Started with Machine Learning
      • Getting Started with Edge Impulse Experiments
  • Computer Vision Projects
    • Workplace Organizer - Nvidia Jetson Nano
    • Recyclable Materials Sorter - Nvidia Jetson Nano
    • Analog Meter Reading - Arduino Nicla Vision
    • Creating Synthetic Data with Nvidia Omniverse Replicator
    • SonicSight AR - Sound Classification with Feedback on an Augmented Reality Display
    • Traffic Monitoring - Brainchip Akida
    • Multi-camera Video Stream Inference - Brainchip Akida
    • Industrial Inspection Line - Brainchip Akida
    • X-Ray Classification and Analysis - Brainchip Akida
    • Inventory Stock Tracker - FOMO - BrainChip Akida
    • Container Counting - Arduino Nicla Vision
    • Smart Smoke Alarm - Arduino Nano 33
    • Shield Bot Autonomous Security Robot
    • Cyclist Blind Spot Detection - Himax WE-I Plus
    • IV Drip Fluid-Level Monitoring - Arduino Portenta H7
    • Worker PPE Safety Monitoring - Nvidia Jetson Nano
    • Delivered Package Detection - ESP-EYE
    • Bean Leaf Disease Classification - Sony Spresense
    • Oil Tank Measurement Using Computer Vision - Sony Spresense
    • Object Counting for Smart Industries - Raspberry Pi
    • Smart Cashier with FOMO - Raspberry Pi
    • PCB Defect Detection with Computer Vision - Raspberry Pi
    • Bicycle Counting - Sony Spresense
    • Counting Eggs with Computer Vision - OpenMV Cam H7
    • Elevator Passenger Counting - Arduino Nicla Vision
    • ESD Protection using Computer Vision - Seeed ReComputer
    • Solar Panel Defect Detection - Arduino Portenta H7
    • Label Defect Detection - Raspberry Pi
    • Dials and Knob Monitoring with Computer Vision - Raspberry Pi
    • Digital Character Recognition on Electric Meter System - OpenMV Cam H7
    • Corrosion Detection with Computer Vision - Seeed reTerminal
    • Inventory Management with Computer Vision - Raspberry Pi
    • Monitoring Retail Checkout Lines with Computer Vision - Renesas RZ/V2L
    • Counting Retail Inventory with Computer Vision - Renesas RZ/V2L
    • Pose Detection - Renesas RZ/V2L
    • Product Quality Inspection - Renesas RZ/V2L
    • Smart Grocery Cart Using Computer Vision - OpenMV Cam H7
    • Driver Drowsiness Detection With FOMO - Arduino Nicla Vision
    • Gastroscopic Image Processing - OpenMV Cam H7
    • Pharmaceutical Pill Quality Control and Defect Detection
    • Deter Shoplifting with Computer Vision - Texas Instruments TDA4VM
    • Smart Factory Prototype - Texas Instruments TDA4VM
    • Correct Posture Detection and Enforcement - Texas Instruments TDA4VM
    • Visual Anomaly Detection with FOMO-AD - Texas Instruments TDA4VM
    • Surface Crack Detection and Localization - Texas Instruments TDA4VM
    • Surface Crack Detection - Seeed reTerminal
    • Retail Image Classification - Nvidia Jetson Nano
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 1
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 2
    • Object Detection and Visualization - Seeed Grove Vision AI Module
    • Bike Rearview Radar - Raspberry Pi
    • Build a Self-Driving RC Vehicle - Arduino Portenta H7 and Computer Vision
    • "Bring Your Own Model" Image Classifier for Wound Identification
    • Acute Lymphoblastic Leukemia Classifier - Nvidia Jetson Nano
    • Hardhat Detection in Industrial Settings - Alif Ensemble E7
    • Motorcycle Helmet Identification and Traffic Light Control - Texas Instruments AM62A
    • Import a Pretrained Model with "Bring Your Own Model" - Texas Instruments AM62A
    • Product Inspection with Visual Anomaly Detection - FOMO-AD - Sony Spresense
    • Visual Anomaly Detection in Fabric using FOMO-AD - Raspberry Pi 5
    • Car Detection and Tracking System for Toll Plazas - Raspberry Pi AI Kit
    • Visual Anomaly Detection - Seeed Grove Vision AI Module V2
    • Object Counting with FOMO - OpenMV Cam RT1062
    • Visitor Heatmap with FOMO Object Detection - Jetson Orin Nano
    • Vehicle Security Camera - Arduino Portenta H7
  • Audio Projects
    • Occupancy Sensing - SiLabs xG24
    • Smart Appliance Control Using Voice Commands - Nordic Thingy:53
    • Glass Window Break Detection - Nordic Thingy:53
    • Illegal Logging Detection - Nordic Thingy:53
    • Illegal Logging Detection - Syntiant TinyML
    • Wearable Cough Sensor and Monitoring - Arduino Nano 33 BLE Sense
    • Collect Data for Keyword Spotting - Raspberry Pi Pico
    • Voice-Activated LED Strip - Raspberry Pi Pico
    • Snoring Detection on a Smart Phone
    • Gunshot Audio Classification - Arduino Nano 33 + Portenta H7
    • AI-Powered Patient Assistance - Arduino Nano 33 BLE Sense
    • Acoustic Pipe Leakage Detection - Arduino Portenta H7
    • Location Identification using Sound - Syntiant TinyML
    • Environmental Noise Classification - Nordic Thingy:53
    • Running Faucet Detection - Seeed XIAO Sense + Blues Cellular
    • Vandalism Detection via Audio Classification - Arduino Nano 33 BLE Sense
    • Predictive Maintenance Using Audio Classification - Arduino Nano 33 BLE Sense
    • Porting an Audio Project from the SiLabs Thunderboard Sense 2 to xG24
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 1
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 2
    • Keyword Spotting - Nordic Thingy:53
    • Detecting Worker Accidents with Audio Classification - Syntiant TinyML
    • Snoring Detection with Syntiant NDP120 Neural Decision Processor - Arduino Nicla Voice
    • Recognize Voice Commands with the Particle Photon 2
    • Voice Controlled Power Plug with Syntiant NDP120 (Nicla Voice)
    • Determining Compressor State with Audio Classification - Avnet RaSynBoard
    • Developing a Voice-Activated Product with Edge Impulse's Synthetic Data Pipeline
    • Enhancing Worker Safety using Synthetic Audio to Create a Dog Bark Classifier
  • Predictive Maintenance and Defect Detection Projects
    • Predictive Maintenance - Nordic Thingy:91
    • Brushless DC Motor Anomaly Detection
    • Industrial Compressor Predictive Maintenance - Nordic Thingy:53
    • Anticipate Power Outages with Machine Learning - Arduino Nano 33 BLE Sense
    • Faulty Lithium-Ion Cell Identification in Battery Packs - Seeed Wio Terminal
    • Weight Scale Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Fluid Leak Detection With a Flowmeter and AI - Seeed Wio Terminal
    • Pipeline Clog Detection with a Flowmeter and AI - Seeed Wio Terminal
    • Refrigerator Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Motor Pump Predictive Maintenance - Infineon PSoC 6 WiFi-BT Pioneer Kit + CN0549
    • BrickML Demo Project - 3D Printer Anomaly Detection
    • Condition Monitoring - Syntiant TinyML Board
    • Predictive Maintenance - Commercial Printer - Sony Spresense + CommonSense
    • Vibration Classification with BrainChip's Akida
    • AI-driven Audio and Thermal HVAC Monitoring - SeeedStudio XIAO ESP32
  • Accelerometer and Activity Projects
    • Arduino x K-Way - Outdoor Activity Tracker
    • Arduino x K-Way - Gesture Recognition for Hiking
    • Arduino x K-Way - TinyML Fall Detection
    • Posture Detection for Worker Safety - SiLabs Thunderboard Sense 2
    • Hand Gesture Recognition - OpenMV Cam H7
    • Arduin-Row, a TinyML Rowing Machine Coach - Arduino Nicla Sense ME
    • Fall Detection using a Transformer Model – Arduino Giga R1 WiFi
    • Bluetooth Fall Detection - Arduino Nano 33 BLE Sense
    • Monitor Packages During Transit with AI - Arduino Nano 33 BLE Sense
    • Smart Baby Swing - Arduino Portenta H7
    • Warehouse Shipment Monitoring - SiLabs Thunderboard Sense 2
    • Gesture Recognition - Bangle.js Smartwatch
    • Gesture Recognition for Patient Communication - SiLabs Thunderboard Sense 2
    • Hospital Bed Occupancy Detection - Arduino Nano 33 BLE Sense
    • Porting a Posture Detection Project from the SiLabs Thunderboard Sense 2 to xG24
    • Porting a Gesture Recognition Project from the SiLabs Thunderboard Sense 2 to xG24
    • Continuous Gait Monitor (Anomaly Detection) - Nordic Thingy:53
    • Classifying Exercise Activities on a BangleJS Smartwatch
  • Air Quality and Environmental Projects
    • Arduino x K-Way - Environmental Asthma Risk Assessment
    • Gas Detection in the Oil and Gas Industry - Nordic Thingy:91
    • Smart HVAC System with a Sony Spresense
    • Smart HVAC System with an Arduino Nicla Vision
    • Indoor CO2 Level Estimation - Arduino Portenta H7
    • Harmful Gases Detection - Arduino Nano 33 BLE Sense
    • Fire Detection Using Sensor Fusion and TinyML - Arduino Nano 33 BLE Sense
    • AI-Assisted Monitoring of Dairy Manufacturing Conditions - Seeed XIAO ESP32C3
    • AI-Assisted Air Quality Monitoring - DFRobot Firebeetle ESP32
    • Air Quality Monitoring with Sipeed Longan Nano - RISC-V Gigadevice
    • Methane Monitoring in Mines - Silabs xG24 Dev Kit
    • Smart Building Ventilation with Environmental Sensor Fusion
    • Sensor Data Fusion with Spresense and CommonSense
    • Water Pollution Detection - Arduino Nano ESP32 + Ultrasonic Scan
    • Fire Detection Using Sensor Fusion - Arduino Nano 33 BLE Sense
  • Novel Sensor Projects
    • 8x8 ToF Gesture Classification - Arduino RP2040 Connect
    • Food Irradiation Dose Detection - DFRobot Beetle ESP32C3
    • Applying EEG Data to Machine Learning, Part 1
    • Applying EEG Data to Machine Learning, Part 2
    • Applying EEG Data to Machine Learning, Part 3
    • Liquid Classification with TinyML - Seeed Wio Terminal + TDS Sensor
    • AI-Assisted Pipeline Diagnostics and Inspection with mmWave Radar
    • Soil Quality Detection Using AI and LoRaWAN - Seeed Sensecap A1101
    • Smart Diaper Prototype - Arduino Nicla Sense ME
    • DIY Smart Glove with Flex Sensors
    • EdgeML Energy Monitoring - Particle Photon 2
    • Wearable for Monitoring Worker Stress using HR/HRV DSP Block - Arduino Portenta
  • Software Integration Demos
    • Azure Machine Learning with Kubernetes Compute and Edge Impulse
    • ROS2 + Edge Impulse, Part 1: Pub/Sub Node in Python
    • ROS2 + Edge Impulse, Part 2: MicroROS
    • Using Hugging Face Datasets in Edge Impulse
    • Using Hugging Face Image Classification Datasets with Edge Impulse
    • Edge Impulse API Usage Sample Application - Jetson Nano Trainer
    • MLOps with Edge Impulse and Azure IoT Edge
    • A Federated Approach to Train and Deploy Machine Learning Models
    • DIY Model Weight Update for Continuous AI Deployments
    • Automate the CI/CD Pipeline of your Models with Edge Impulse and GitHub Actions
    • Deploying Edge Impulse Models on ZEDEDA Cloud Devices
Powered by GitBook
On this page
  • Introduction
  • Dataset Preparation
  • Impulse Design
  • Model Testing
  • Deploying to Syntiant TinyML Board
  • A Smart Watch-out
  • Conclusion

Was this helpful?

Edit on GitHub
Export as PDF
  1. Audio Projects

Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 1

A prototype smart device that uses a Syntiant TinyML board to alert the wearer with haptic feedback if emergency vehicles or car horns are detected.

PreviousPorting an Audio Project from the SiLabs Thunderboard Sense 2 to xG24NextEnvironmental Audio Monitoring Wearable - Syntiant TinyML - Part 2

Last updated 2 years ago

Was this helpful?

Created By: Solomon Githu

Public Project Link:

Introduction

An electronic device that is intended to function on a user's body is considered wearable technology. The largest categories of wearables are smartwatches and hearables, which have experienced the fastest growth in the recent years. Steve Roddy, former Vice President of Product Marketing for Arm's Machine Learning Group once said that "TinyML deployments are powering a huge growth in ML deployment, greatly accelerating the use of ML in all manner of devices and making those devices better, smarter, and more responsive to human interaction". TinyML enables running Machine Learning on resource constrained devices like wearables.

Sound classification is one of the most widely used applications of Machine Learning. A new use case for wearables is an environmental audio monitor for individuals with hearing disabilities. This is a wearable device that has a computer which can listen to the environment sounds and classify them. In this project, I focused on giving tactile feedback when vehicle sounds are detected. The Machine Learning model can detect ambulance and firetruck sirens as well as cars honking. When these vehicles are detected, the device then gives a vibration pulse which can be felt by the person wearing the device. This use case can be revolutionary for people who have hearing problems and even deaf people. To keep people safe from being injured, the device can inform them when there is a car, ambulance or firetruck nearby so that they can identify it and move out of the way.

Dataset Preparation

In addition to the key events that I wanted to be detected, I also needed another class that is not part of them. I labelled this class as "unknown" and it has sounds of traffic, people speaking, machines, and vehicles, among others. Each class has 1 second of audio sounds.

Impulse Design

The Impulse design was very unique as I was targeting the Syntiant TinyML board. Under "Create Impulse" I set the following configurations:

Under "Classifier" I set the number of training cycle as 100 with a learning rate of 0.0005. Edge Impulse automatically designs a default Neural Network architecture that works very well without requiring the parameters to be changed. However, if you wish to update some parameters, Data Augmentation can improve your model accuracy. Try adding noise, masking time and frequency bands and inspect your model performance with each setting.

I then clicked “Start training” and waited for a few minutes for the training to be complete. Upon completion of the training process, I got an accuracy of 97.6%, which is pretty good!

Model Testing

On the left bar, we click "Model testing" then "Classify all". The current model has a performance of 97.8% which is pretty good and acceptable.

From the test data, we can see the first sample has a length of 3 seconds. I recorded this in a living room which had a computer playing siren sounds and at the same time a television was playing a movie. In each timestamp of 1 second, we can see that the model was able to predict the ambulance_firetruck class. I took this as an acceptable performance of the model and proceeded to deploy it to the Syntiant TinyML board.

Deploying to Syntiant TinyML Board

To deploy our model to the Syntiant Board, first click "Deployment" on the left side panel. Here, we will first deploy our model as a firmware for the board. When our audible events: ambulance_firetruck and car_horn are detected, the onboard RGB LED will turn on. When the "unknown" sounds are detected, the onboard RGB LED will be off. This firmware runs locally on the board without requiring internet connectivity and also with minimal power consumption.

Under "Build Firmware" select Syntiant TinyML.

Under "Configure posterior parameters" click "Find posterior parameters". Check all classes apart from "unknown", and for calibration dataset we use "No calibration (fastest)". After setting the configurations, click "Find parameters".

This will start a new task, so we have to wait until it is finished.

When the job is completed, close the popup window and then click "Build" option to build our firmware. The firmware will be downloaded automatically when the build job completes.

Once the firmware is downloaded, we first need to unzip it. Connect a Syntiant TinyML board to your computer using a USB cable. Next, open the unzipped folder and run the flashing script based on your Operating System.

We can connect to the board's firmware over Serial. To do this, open a terminal, select the COM Port of the Syntiant TinyML board with settings 115200 8-N-1 settings (in Arduino IDE, that is 115200 baud Carriage return). Sounds of ambulance sirens, firetruck sirens, and cars horns will turn the RGB LED red.

For the "unknown" sounds, the RGB LED is off. In configuring the posterior parameters, the detected classes that we selected are the ones which trigger the RGB LED lighting.

A Smart Watch-out

After testing the model on the Syntiant TinyML board and finding that it works great, I proceeded to create a demo of the smart wearable of this project.

This involved connecting a vibration motor to GPIO 1 of the Syntiant TinyML board. When the classes "ambulance_firetruck" and "car_horn" are detected, the GPIO 1 on the board is set HIGH and this causes the vibration motor to vibrate for 1500 milliseconds. Vibration motors are mostly used to give haptic feedback in mobile phones and video game controllers. They are the components that make your phone vibrate.

Since we cannot connect a motor directly to the GPIO pins, I used the 5V pad on the Syntiant TinyML board to power the vibration motor through a transistor that is switched by GPIO 1.

In future, we can then package these components safely into a wrist wearable. The Syntiant TinyML board has a 3.7V LiPo battery connector which will enable the wearable to be used anywhere. For this demo, I used the USB connector as the power source for all components.

The image below shows the annotation of the Syntiant TinyML board. GPIO 1, GND and the 5V pad on the bottom side are used for this smart wearable.

Conclusion

This environmental audio monitor wearable is one of the many solutions that TinyML offers. A future work can be to include other sounds such as motor bikes, detect construction equipment, or alarm sounds, among others.

With Edge Impulse, developing ML models and deploying them has always been easy. The Syntiant TinyML board was chosen to deploy our model because it provides ultra-low power consumption, a fully connected neural network architecture, an onboard microphone, its tiny size, and is also fully supported by Edge Impulse.

I used to train my model and deploy it to the . This is a tiny development board with a microphone and accelerometer, USB host microcontroller and an always-on Neural Decision Processor™, featuring ultra low-power consumption, a fully connected neural network architecture, and supported by Edge Impulse.

You can find the public Edge Impulse project here: . To add this project into your Account projects, click "Clone" at the top of the window. Next, go to "Deploying to Syntiant TinyML board" section to see how you can deploy the model to the Syntiant TinyML board.

I first searched for open datasets of ambulance siren, firetruck siren, car horns and traffic sounds. I used the Kaggle dataset of and the for the key sounds. From these datasets, I created the classes "ambulance_firetruck" and "car_horn".

In total, I had 20 minutes of data for training and 5 minutes of data for testing. For part of the "unknown" class, I used Edge Impulse . From this dataset, I used the “noise” audio files.

The window size is 968ms and window increase is 484ms milliseconds(ms). I then added the "Audio (Syntiant)" processing block and the "Classification" Learning block. For a detailed explanation of the Impulse Design for the Syntiant TinyML audio classification, checkout the .

The next step was to extract Features from the training data. This is done by the Syntiant processing block. On the Parameters page, I used the default Log Mel filterbank energy features and they worked very well. The is one of the most fun options in Edge Impulse. In the feature explorer, all data in your dataset are visualized in one graph. The axes are the output of the signal processing process and they can let you quickly validate whether your data separates nicely. I was satisfied with how my features separated for each class. This enabled me to proceed to the next step, training the model.

When training the model, I used 80% of the data in the dataset. The remaining 20% is used to test the accuracy of the model in classifying unseen data. We need to verify that our model has not overfit by testing it on new data. If your model performs poorly, then it means that it overfit (crammed your dataset). This can be resolved by adding more dataset and/or reconfiguring the processing and learning blocks if needed. Increasing performance tricks can be found in this .

Next, we need to configure posterior parameters. These are used to tune the precision and recall of our Neural Network activations, to minimize False Rejection Rate and False Activation Rate. More information on posterior parameters can be found here

You can find the Arduino code for this use case in the GitHub repository . The repository has the instructions on how to install the required libraries and upload the Arduino code to the Syntiant TinyML board.

Edge Impulse Platform
Syntiant TinyML board
Environmental Audio Monitor
Emergency Vehicle Siren Sounds
Isolated urban sound database
keywords dataset
Edge Impulse documentation
Feature explorer
guide
Responding to your voice - Syntiant - RC Commands
syntiant-tinyml-firmware-environment-hearing-aider
https://studio.edgeimpulse.com/public/171255/latest
Cover Image
Training Data
Testing Data
Impulse Design
Features Parameters
Features
Training Performance
Testing Performance
Testing Sample
Build Firmware - Syntiant TinyML
Find Posterior Parameters
Find Posterior Parameters Finished
Building Firmware
Syntiant TinyML Board RGB Red
Serial Logs
Vibration Motor
Connecting Syntiant TinyML Board and Vibration Motor
5V from Syntiant TinyML Board
Wearable Demo
Syntiant TinyML Board Annotation