LogoLogo
HomeDocsAPI & SDKsProjectsForumStudio
  • Welcome
    • Featured Machine Learning Projects
      • Getting Started with the Edge Impulse Nvidia TAO Pipeline - Renesas EK-RA8D1
      • Smart City Traffic Analysis - NVIDIA TAO + Jetson Orin Nano
      • ROS 2 Pick and Place System - Arduino Braccio++ Robotic Arm and Luxonis OAK-D
      • Optimize a cloud-based Visual Anomaly Detection Model for Edge Deployments
      • Rooftop Ice Detection with Things Network Visualization - Nvidia Omniverse Replicator
      • Surgery Inventory Object Detection - Synthetic Data - Nvidia Omniverse Replicator
      • NVIDIA Omniverse - Synthetic Data Generation For Edge Impulse Projects
      • Community Guide – Using Edge Impulse with Nvidia DeepStream
      • Computer Vision Object Counting - Avnet RZBoard V2L
      • Gesture Appliances Control with Pose Detection - BrainChip AKD1000
      • Counting for Inspection and Quality Control - Nvidia Jetson Nano (TensorRT)
      • High-resolution, High-speed Object Counting - Nvidia Jetson Nano (TensorRT)
    • Prototype and Concept Projects
      • Renesas CK-RA6M5 Cloud Kit - Getting Started with Machine Learning
      • TI CC1352P Launchpad - Getting Started with Machine Learning
      • OpenMV Cam RT1062 - Getting Started with Machine Learning
      • Getting Started with Edge Impulse Experiments
  • Computer Vision Projects
    • Workplace Organizer - Nvidia Jetson Nano
    • Recyclable Materials Sorter - Nvidia Jetson Nano
    • Analog Meter Reading - Arduino Nicla Vision
    • Creating Synthetic Data with Nvidia Omniverse Replicator
    • SonicSight AR - Sound Classification with Feedback on an Augmented Reality Display
    • Traffic Monitoring - Brainchip Akida
    • Multi-camera Video Stream Inference - Brainchip Akida
    • Industrial Inspection Line - Brainchip Akida
    • X-Ray Classification and Analysis - Brainchip Akida
    • Inventory Stock Tracker - FOMO - BrainChip Akida
    • Container Counting - Arduino Nicla Vision
    • Smart Smoke Alarm - Arduino Nano 33
    • Shield Bot Autonomous Security Robot
    • Cyclist Blind Spot Detection - Himax WE-I Plus
    • IV Drip Fluid-Level Monitoring - Arduino Portenta H7
    • Worker PPE Safety Monitoring - Nvidia Jetson Nano
    • Delivered Package Detection - ESP-EYE
    • Bean Leaf Disease Classification - Sony Spresense
    • Oil Tank Measurement Using Computer Vision - Sony Spresense
    • Object Counting for Smart Industries - Raspberry Pi
    • Smart Cashier with FOMO - Raspberry Pi
    • PCB Defect Detection with Computer Vision - Raspberry Pi
    • Bicycle Counting - Sony Spresense
    • Counting Eggs with Computer Vision - OpenMV Cam H7
    • Elevator Passenger Counting - Arduino Nicla Vision
    • ESD Protection using Computer Vision - Seeed ReComputer
    • Solar Panel Defect Detection - Arduino Portenta H7
    • Label Defect Detection - Raspberry Pi
    • Dials and Knob Monitoring with Computer Vision - Raspberry Pi
    • Digital Character Recognition on Electric Meter System - OpenMV Cam H7
    • Corrosion Detection with Computer Vision - Seeed reTerminal
    • Inventory Management with Computer Vision - Raspberry Pi
    • Monitoring Retail Checkout Lines with Computer Vision - Renesas RZ/V2L
    • Counting Retail Inventory with Computer Vision - Renesas RZ/V2L
    • Pose Detection - Renesas RZ/V2L
    • Product Quality Inspection - Renesas RZ/V2L
    • Smart Grocery Cart Using Computer Vision - OpenMV Cam H7
    • Driver Drowsiness Detection With FOMO - Arduino Nicla Vision
    • Gastroscopic Image Processing - OpenMV Cam H7
    • Pharmaceutical Pill Quality Control and Defect Detection
    • Deter Shoplifting with Computer Vision - Texas Instruments TDA4VM
    • Smart Factory Prototype - Texas Instruments TDA4VM
    • Correct Posture Detection and Enforcement - Texas Instruments TDA4VM
    • Visual Anomaly Detection with FOMO-AD - Texas Instruments TDA4VM
    • Surface Crack Detection and Localization - Texas Instruments TDA4VM
    • Surface Crack Detection - Seeed reTerminal
    • Retail Image Classification - Nvidia Jetson Nano
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 1
    • SiLabs xG24 Plus Arducam - Sorting Objects with Computer Vision and Robotics - Part 2
    • Object Detection and Visualization - Seeed Grove Vision AI Module
    • Bike Rearview Radar - Raspberry Pi
    • Build a Self-Driving RC Vehicle - Arduino Portenta H7 and Computer Vision
    • "Bring Your Own Model" Image Classifier for Wound Identification
    • Acute Lymphoblastic Leukemia Classifier - Nvidia Jetson Nano
    • Hardhat Detection in Industrial Settings - Alif Ensemble E7
    • Motorcycle Helmet Identification and Traffic Light Control - Texas Instruments AM62A
    • Import a Pretrained Model with "Bring Your Own Model" - Texas Instruments AM62A
    • Product Inspection with Visual Anomaly Detection - FOMO-AD - Sony Spresense
    • Visual Anomaly Detection in Fabric using FOMO-AD - Raspberry Pi 5
    • Car Detection and Tracking System for Toll Plazas - Raspberry Pi AI Kit
    • Visual Anomaly Detection - Seeed Grove Vision AI Module V2
    • Object Counting with FOMO - OpenMV Cam RT1062
    • Visitor Heatmap with FOMO Object Detection - Jetson Orin Nano
    • Vehicle Security Camera - Arduino Portenta H7
  • Audio Projects
    • Occupancy Sensing - SiLabs xG24
    • Smart Appliance Control Using Voice Commands - Nordic Thingy:53
    • Glass Window Break Detection - Nordic Thingy:53
    • Illegal Logging Detection - Nordic Thingy:53
    • Illegal Logging Detection - Syntiant TinyML
    • Wearable Cough Sensor and Monitoring - Arduino Nano 33 BLE Sense
    • Collect Data for Keyword Spotting - Raspberry Pi Pico
    • Voice-Activated LED Strip - Raspberry Pi Pico
    • Snoring Detection on a Smart Phone
    • Gunshot Audio Classification - Arduino Nano 33 + Portenta H7
    • AI-Powered Patient Assistance - Arduino Nano 33 BLE Sense
    • Acoustic Pipe Leakage Detection - Arduino Portenta H7
    • Location Identification using Sound - Syntiant TinyML
    • Environmental Noise Classification - Nordic Thingy:53
    • Running Faucet Detection - Seeed XIAO Sense + Blues Cellular
    • Vandalism Detection via Audio Classification - Arduino Nano 33 BLE Sense
    • Predictive Maintenance Using Audio Classification - Arduino Nano 33 BLE Sense
    • Porting an Audio Project from the SiLabs Thunderboard Sense 2 to xG24
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 1
    • Environmental Audio Monitoring Wearable - Syntiant TinyML - Part 2
    • Keyword Spotting - Nordic Thingy:53
    • Detecting Worker Accidents with Audio Classification - Syntiant TinyML
    • Snoring Detection with Syntiant NDP120 Neural Decision Processor - Arduino Nicla Voice
    • Recognize Voice Commands with the Particle Photon 2
    • Voice Controlled Power Plug with Syntiant NDP120 (Nicla Voice)
    • Determining Compressor State with Audio Classification - Avnet RaSynBoard
    • Developing a Voice-Activated Product with Edge Impulse's Synthetic Data Pipeline
    • Enhancing Worker Safety using Synthetic Audio to Create a Dog Bark Classifier
  • Predictive Maintenance and Defect Detection Projects
    • Predictive Maintenance - Nordic Thingy:91
    • Brushless DC Motor Anomaly Detection
    • Industrial Compressor Predictive Maintenance - Nordic Thingy:53
    • Anticipate Power Outages with Machine Learning - Arduino Nano 33 BLE Sense
    • Faulty Lithium-Ion Cell Identification in Battery Packs - Seeed Wio Terminal
    • Weight Scale Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Fluid Leak Detection With a Flowmeter and AI - Seeed Wio Terminal
    • Pipeline Clog Detection with a Flowmeter and AI - Seeed Wio Terminal
    • Refrigerator Predictive Maintenance - Arduino Nano 33 BLE Sense
    • Motor Pump Predictive Maintenance - Infineon PSoC 6 WiFi-BT Pioneer Kit + CN0549
    • BrickML Demo Project - 3D Printer Anomaly Detection
    • Condition Monitoring - Syntiant TinyML Board
    • Predictive Maintenance - Commercial Printer - Sony Spresense + CommonSense
    • Vibration Classification with BrainChip's Akida
    • AI-driven Audio and Thermal HVAC Monitoring - SeeedStudio XIAO ESP32
  • Accelerometer and Activity Projects
    • Arduino x K-Way - Outdoor Activity Tracker
    • Arduino x K-Way - Gesture Recognition for Hiking
    • Arduino x K-Way - TinyML Fall Detection
    • Posture Detection for Worker Safety - SiLabs Thunderboard Sense 2
    • Hand Gesture Recognition - OpenMV Cam H7
    • Arduin-Row, a TinyML Rowing Machine Coach - Arduino Nicla Sense ME
    • Fall Detection using a Transformer Model – Arduino Giga R1 WiFi
    • Bluetooth Fall Detection - Arduino Nano 33 BLE Sense
    • Monitor Packages During Transit with AI - Arduino Nano 33 BLE Sense
    • Smart Baby Swing - Arduino Portenta H7
    • Warehouse Shipment Monitoring - SiLabs Thunderboard Sense 2
    • Gesture Recognition - Bangle.js Smartwatch
    • Gesture Recognition for Patient Communication - SiLabs Thunderboard Sense 2
    • Hospital Bed Occupancy Detection - Arduino Nano 33 BLE Sense
    • Porting a Posture Detection Project from the SiLabs Thunderboard Sense 2 to xG24
    • Porting a Gesture Recognition Project from the SiLabs Thunderboard Sense 2 to xG24
    • Continuous Gait Monitor (Anomaly Detection) - Nordic Thingy:53
    • Classifying Exercise Activities on a BangleJS Smartwatch
  • Air Quality and Environmental Projects
    • Arduino x K-Way - Environmental Asthma Risk Assessment
    • Gas Detection in the Oil and Gas Industry - Nordic Thingy:91
    • Smart HVAC System with a Sony Spresense
    • Smart HVAC System with an Arduino Nicla Vision
    • Indoor CO2 Level Estimation - Arduino Portenta H7
    • Harmful Gases Detection - Arduino Nano 33 BLE Sense
    • Fire Detection Using Sensor Fusion and TinyML - Arduino Nano 33 BLE Sense
    • AI-Assisted Monitoring of Dairy Manufacturing Conditions - Seeed XIAO ESP32C3
    • AI-Assisted Air Quality Monitoring - DFRobot Firebeetle ESP32
    • Air Quality Monitoring with Sipeed Longan Nano - RISC-V Gigadevice
    • Methane Monitoring in Mines - Silabs xG24 Dev Kit
    • Smart Building Ventilation with Environmental Sensor Fusion
    • Sensor Data Fusion with Spresense and CommonSense
    • Water Pollution Detection - Arduino Nano ESP32 + Ultrasonic Scan
    • Fire Detection Using Sensor Fusion - Arduino Nano 33 BLE Sense
  • Novel Sensor Projects
    • 8x8 ToF Gesture Classification - Arduino RP2040 Connect
    • Food Irradiation Dose Detection - DFRobot Beetle ESP32C3
    • Applying EEG Data to Machine Learning, Part 1
    • Applying EEG Data to Machine Learning, Part 2
    • Applying EEG Data to Machine Learning, Part 3
    • Liquid Classification with TinyML - Seeed Wio Terminal + TDS Sensor
    • AI-Assisted Pipeline Diagnostics and Inspection with mmWave Radar
    • Soil Quality Detection Using AI and LoRaWAN - Seeed Sensecap A1101
    • Smart Diaper Prototype - Arduino Nicla Sense ME
    • DIY Smart Glove with Flex Sensors
    • EdgeML Energy Monitoring - Particle Photon 2
    • Wearable for Monitoring Worker Stress using HR/HRV DSP Block - Arduino Portenta
  • Software Integration Demos
    • Azure Machine Learning with Kubernetes Compute and Edge Impulse
    • ROS2 + Edge Impulse, Part 1: Pub/Sub Node in Python
    • ROS2 + Edge Impulse, Part 2: MicroROS
    • Using Hugging Face Datasets in Edge Impulse
    • Using Hugging Face Image Classification Datasets with Edge Impulse
    • Edge Impulse API Usage Sample Application - Jetson Nano Trainer
    • MLOps with Edge Impulse and Azure IoT Edge
    • A Federated Approach to Train and Deploy Machine Learning Models
    • DIY Model Weight Update for Continuous AI Deployments
    • Automate the CI/CD Pipeline of your Models with Edge Impulse and GitHub Actions
    • Deploying Edge Impulse Models on ZEDEDA Cloud Devices
Powered by GitBook
On this page
  • Project Demo
  • Intro
  • Getting Started with the Thingy:53
  • Collecting Audio Data
  • Training an Audio Classification Model
  • Deploying the Model on the Thingy:53
  • Running Live Inference on the Thingy:53
  • A Network of Devices
  • Resources

Was this helpful?

Edit on GitHub
Export as PDF
  1. Audio Projects

Environmental Noise Classification - Nordic Thingy:53

A sample project demonstrating how to use the Nordic Thingy:53 and the Edge Impulse App to perform environmental noise classification.

PreviousLocation Identification using Sound - Syntiant TinyMLNextRunning Faucet Detection - Seeed XIAO Sense + Blues Cellular

Last updated 1 year ago

Was this helpful?

Created By: Attila Tokes

Public Project Link:

Project Demo

Intro

Noise pollution can be a significant problem especially in densely populated urban areas. It can have negative effects both humans and the wildlife. Also, noise pollution is often caused by power hungry activities, such as industrial processes, constructions, flights, etc.

A Noise Pollution Monitoring device built on top of the Nordic Thingy:53 development kit, with smart classification capabilities using Edge Impulse can be a good way to monitor this phenomenon in urban areas. Using a set of Noise Pollution Monitoring the noise / environmental pollution from a city can be monitored. Based on the measured data, actions can be taken to improve the situation. Activities causing noise pollution tend to also have a high energy consumption. Replacing this applications with more efficient solutions can reduce their energy footprint they have.

In this project I will demonstrate how a low power device like the Nordic Thingy:53 can be used in conjunction with an edge machine learning platform like Edge Impulse to build a smart noise / environmental pollution monitor. The PDM microphone of the Nordic Thingy:53 will be used to capture environmental noise. A digital signal processing (DSP) and Inference pipeline built using Edge Impulse will be used to classify audio samples of know activities like construction works, traffic and others.

Getting Started with the Thingy:53

The Nordic Thingy:53 is comes with the pre-installed firmware, that allows us to easily create machine learning projects with Edge Impulse.

To get started with the app we will need to create an Edge Impulse account, and a project:

After this we should be able to detect the Thingy:53 in the Devices tab. The thingy will show up as a device named EdgeImpulse.

Going to the Inference tab we can try out the pre-installed demo app, which uses the accelerometer data to detect 4 types of movement.

Collecting Audio Data

The first step of building a machine learning model is to collect some training data.

For this proof-of-concept, I decided to go with 4 classes of sounds:

  • Silence - a silent room

  • Nature - sound of birds, rain, etc.

  • Construction - sounds from a construction site

  • Traffic - urban traffic sounds

A the source of the audio samples I used a number of Youtube videos, listed in the Resources section.

The audio sample can be collected from the Data tab of the nRF Edge Impulse app:

The audio samples are automatically uploaded to the Edge Impulse Studio project, and should show up in the Data Acquisition tab:

By default all the samples will be put in the Train set. We also need a couple of samples for verification, so we will need to run a Train / Test split:

After this we should have approximately 80% of samples in the Train set, and 20% in the Test set:

Training an Audio Classification Model

Having the audio data, we can start building a machine learning model.

In Edge Impulse project the machine learning pipeline is called an Impulse. An impulse includes the pre-processing, feature extraction and inference steps needed to classify, in our case, audio data.

For this project I went will the following design:

  • Time Series Data Input - with 1 second windows @ 16kHz

  • Audio (MFE) Extractor - this is the recommended feature extractor for non-voice audio

  • NN / Keras Classifier - a neural network classifier

  • Output with 4 Classes - Silence, Nature, Traffic, Construction

The impulse blocks were trained mostly with the default settings. The feature extraction block looks like follows:

This is followed by the classification block:

The resulting model is surprisingly good:

Most of the test samples were correctly classified. We only have a couple of mismatches for the Traffic / Construction and Silence / Nature classes. This is however expected, as these sounds can be pretty similar.

Deploying the Model on the Thingy:53

Building an deploying an embedded application including machine learning used to involve a couple of steps. With the Thingy:53 and Edge Impulse this become much easier.

We just need to go to the Deployment tab, and hit Deploy. The model will automatically start building:

A couple of minutes later the model is built and deployed on our Thingy:53:

Running Live Inference on the Thingy:53

The Deployment we did earlier should have been uploaded a firmware with the new model on the Thingy:53. Hitting Start on the Inference will start live classification on the device.

I tested the application out with new audio samples for each class:

A Network of Devices

In future versions this project could be extended to also include features like:

  • Noise level / decibel measurement

  • Cloud connectivity via Bluetooth Mesh / Thread

  • Solar panel charging

A network of such monitoring devices could be used to monitor the noise / environmental pollution in a city. Based on the collected data high impact / polluting activities can be identified, and can be replaced with better alternatives.

Resources

Sound Sources:

The mobile app is used to interact with Thingy:53. The app also integrates with the embedded machine learning platform.

Edge Impulse Project:

Nordic Thingy:53:

Edge Impulse Documentation:

Construction:

Nature:

Traffic:

nRF Edge Impulse
Edge Impulse
https://studio.edgeimpulse.com/studio/146039
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-53
https://docs.edgeimpulse.com/docs/
10 Hours of Construction Sound | Amazing Sounds with Peter Baeten
(Sunville Sounds)
Bird Watching 4K with bird sounds to relax and study | A day in the backyard
(Sunville Sounds)
Beautiful Afternoon In Nature With Singing Birds ~ Stories With Peter Baeten
(Sunville Sounds)
Gentle Rain Sounds on Window ~ Calming Rain For Sleeping & Relaxing | Rain Sounds with Peter Baeten
(Sunville Sounds)
Busy Traffic Sound Effects
(All Things Grammar)
Heavy Traffic Sound Effects | Bike Riding in Traffic Roads Sounds | Zoom Hn1 Indian Roads FreeSounds
(To Know Everything)
City Traffic Sounds for Sleep | Highway Ambience at Night | 10 Hours ASMR White Noise
(Nomadic Ambience)
https://studio.edgeimpulse.com/public/146039/latest