performance_calibration_false_positive module
PerformanceCalibrationFalsePositive
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Parameters
**data: Any
Bases
pydantic.main.BaseModel
pydantic.utils.Representation
Class variables
Config
detection_time: pydantic.types.StrictInt
ground_truth_label: Optional[pydantic.types.StrictStr]
ground_truth_start: Optional[float]
sample_ids: Optional[List[pydantic.types.StrictInt]]
type: pydantic.types.StrictStr
Static methods
from_dict
Create an instance of PerformanceCalibrationFalsePositive from a dict
Parameters
obj: dict
Return
edgeimpulse_api.models.performance_calibration_false_positive.PerformanceCalibrationFalsePositive
from_json
Create an instance of PerformanceCalibrationFalsePositive from a JSON string
Parameters
json_str: str
Return
edgeimpulse_api.models.performance_calibration_false_positive.PerformanceCalibrationFalsePositive
type_validate_enum
Parameters
v
Methods
to_dict
Returns the dictionary representation of the model using alias
Parameters
self
to_json
Returns the JSON representation of the model using alias
Parameters
self
indent=None
Return
str
to_str
Returns the string representation of the model using alias
Parameters
self
Return
str
Last updated