optimize_config module

OptimizeConfig

class edgeimpulse_api.models.optimize_config.OptimizeConfig(
		**data: Any
)

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Parameters

  • **data: Any

Bases

  • pydantic.main.BaseModel

  • pydantic.utils.Representation

Class variables

  • Config

  • accuracy_sem: float | None

  • compiler: List[pydantic.types.StrictStr] | None

  • disable_constraints: pydantic.types.StrictBool | None

  • disable_deduplicate: pydantic.types.StrictBool | None

  • early_stopping: pydantic.types.StrictBool | None

  • early_stopping_improvement_bar: float | None

  • early_stopping_window_size: float | None

  • enable_sem: pydantic.types.StrictBool | None

  • import_project_metrics: pydantic.types.StrictBool | None

  • import_resource_metrics: pydantic.types.StrictBool | None

  • initial_trials: pydantic.types.StrictInt | None

  • latency_sem: float | None

  • max_maccs: float | None

  • min_maccs: float | None

  • momf: pydantic.types.StrictBool | None

  • name: pydantic.types.StrictStr | None

  • notification_on_completion: pydantic.types.StrictBool | None

  • num_import_project_metrics: float | None

  • num_import_resource_metrics: float | None

  • optimization_objectives: List[edgeimpulse_api.models.optimize_config_optimization_objectives_inner.OptimizeConfigOptimizationObjectivesInner] | None

  • optimization_precision: pydantic.types.StrictStr | None

  • optimization_rounds: pydantic.types.StrictInt | None

  • precision: List[pydantic.types.StrictStr] | None

  • raw_objectives: pydantic.types.StrictStr | None

  • search_space_source: edgeimpulse_api.models.optimize_config_search_space_source.OptimizeConfigSearchSpaceSource | None

  • search_space_template: edgeimpulse_api.models.optimize_config_search_space_template.OptimizeConfigSearchSpaceTemplate | None

  • space: List[edgeimpulse_api.models.tuner_space_impulse.TunerSpaceImpulse] | None

  • target_device: edgeimpulse_api.models.optimize_config_target_device.OptimizeConfigTargetDevice

  • target_latency: pydantic.types.StrictInt

  • training_cycles: pydantic.types.StrictInt | None

  • trials_per_optimization_round: pydantic.types.StrictInt | None

  • tuner_space_options: Dict[str, List[pydantic.types.StrictStr]] | None

  • tuning_algorithm: pydantic.types.StrictStr | None

  • tuning_max_trials: pydantic.types.StrictInt | None

  • tuning_workers: pydantic.types.StrictInt | None

  • verbose_logging: pydantic.types.StrictBool | None

Static methods

from_dict

edgeimpulse_api.models.optimize_config.from_dict(
		obj: dict
)> edgeimpulse_api.models.optimize_config.OptimizeConfig

Create an instance of OptimizeConfig from a dict

Parameters

  • obj: dict

Return

edgeimpulse_api.models.optimize_config.OptimizeConfig

from_json

edgeimpulse_api.models.optimize_config.from_json(
		json_str: str
)> edgeimpulse_api.models.optimize_config.OptimizeConfig

Create an instance of OptimizeConfig from a JSON string

Parameters

  • json_str: str

Return

edgeimpulse_api.models.optimize_config.OptimizeConfig

optimization_precision_validate_enum

edgeimpulse_api.models.optimize_config.optimization_precision_validate_enum(
		v
)

Parameters

  • v

tuning_algorithm_validate_enum

edgeimpulse_api.models.optimize_config.tuning_algorithm_validate_enum(
		v
)

Parameters

  • v

Methods

to_dict

edgeimpulse_api.models.optimize_config.to_dict(
		self
)

Returns the dictionary representation of the model using alias

Parameters

  • self

to_json

edgeimpulse_api.models.optimize_config.to_json(
		self,
		indent=None
)> str

Returns the JSON representation of the model using alias

Parameters

  • self

  • indent=None

Return

str

to_str

edgeimpulse_api.models.optimize_config.to_str(
		self
)> str

Returns the string representation of the model using alias

Parameters

  • self

Return

str

Last updated