performance_calibration_parameter_set module
PerformanceCalibrationParameterSet
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Parameters
**data: Any
Bases
pydantic.main.BaseModel
pydantic.utils.Representation
Class variables
Config
The type of the None singleton.aggregate_stats: edgeimpulse_api.models.performance_calibration_parameter_set_aggregate_stats.PerformanceCalibrationParameterSetAggregateStats
The type of the None singleton.detections: List[edgeimpulse_api.models.performance_calibration_detection.PerformanceCalibrationDetection]
The type of the None singleton.is_best: pydantic.types.StrictBool
The type of the None singleton.labels: List[pydantic.types.StrictStr]
The type of the None singleton.params: edgeimpulse_api.models.performance_calibration_parameters.PerformanceCalibrationParameters
The type of the None singleton.stats: List[edgeimpulse_api.models.performance_calibration_parameter_set_stats_inner.PerformanceCalibrationParameterSetStatsInner]
The type of the None singleton.window_size_ms: float
The type of the None singleton.
Static methods
from_dict
Create an instance of PerformanceCalibrationParameterSet from a dict
Parameters
obj: dict
Return
edgeimpulse_api.models.performance_calibration_parameter_set.PerformanceCalibrationParameterSet
from_json
Create an instance of PerformanceCalibrationParameterSet from a JSON string
Parameters
json_str: str
Return
edgeimpulse_api.models.performance_calibration_parameter_set.PerformanceCalibrationParameterSet
Methods
to_dict
Returns the dictionary representation of the model using alias
Parameters
self
to_json
Returns the JSON representation of the model using alias
Parameters
self
indent=None
Return
str
to_str
Returns the string representation of the model using alias
Parameters
self
Return
str
Last updated
Was this helpful?