Classes
ClassifyApi
Parameters | |
---|---|
api_client=None | |
METHODS
classify_image
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
image | Annotated[str, Strict(strict=True)] |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.test_pretrained_model_response.TestPretrainedModelResponse |
classify_sample
/v1/api/{projectId}/classify/v2/{sampleId}
). Classify a complete file against the current impulse. This will move the sliding window (dependent on the sliding window length and the sliding window increase parameters in the impulse) over the complete file, and classify for every window that is extracted.
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
include_debug_info | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Whether to return the debug information from FOMO classification.')] = None |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_sample_response.ClassifySampleResponse |
classify_sample_by_learn_block
/v1/api/{projectId}/classify/anomaly-gmm/v2/{blockId}/{sampleId}
) instead. Classify a complete file against the specified learn block. This will move the sliding window (dependent on the sliding window length and the sliding window increase parameters in the impulse) over the complete file, and classify for every window that is extracted.
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
block_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Block ID')] |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_sample_response.ClassifySampleResponse |
classify_sample_by_learn_block_v2
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
block_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Block ID')] |
variant | Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(annotation=NoneType, required=True, description='Keras model variant')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_sample_v2200_response.ClassifySampleV2200Response |
classify_sample_for_variants
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
variants | Annotated[str, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='List of keras model variants, given as a JSON string')] |
include_debug_info | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Whether to return the debug information from FOMO classification.')] = None |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_sample_for_variants200_response.ClassifySampleForVariants200Response |
classify_sample_v2
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
include_debug_info | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Whether to return the debug information from FOMO classification.')] = None |
variant | Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(annotation=NoneType, required=True, description='Keras model variant')] = None |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_sample_v2200_response.ClassifySampleV2200Response |
get_classify_job_result
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
feature_explorer_only | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Whether to get only the classification results relevant to the feature explorer.')] = None |
variant | Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(annotation=NoneType, required=True, description='Keras model variant')] = None |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_job_response.ClassifyJobResponse |
get_classify_job_result_page
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
limit | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Maximum number of results')] = None |
offset | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Offset in results, can be used in conjunction with LimitResultsParameter to implement paging.')] = None |
variant | Annotated[edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None, FieldInfo(annotation=NoneType, required=True, description='Keras model variant')] = None |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
labels | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples with a label within the given list of labels, given as a JSON string')] = None |
filename | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples whose filename includes the given filename')] = None |
max_length | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples shorter than the given length, in milliseconds')] = None |
min_length | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples longer than the given length, in milliseconds')] = None |
min_frequency | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples with higher frequency than given frequency, in hertz')] = None |
max_frequency | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples with lower frequency than given frequency, in hertz')] = None |
signature_validity | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Include samples with either valid or invalid signatures')] = None |
min_label | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples with a label >= this value')] = None |
max_label | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples with a label < this value')] = None |
search | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Search query')] = None |
data_type | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Include only samples with a particular data type')] = None |
min_id | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Include only samples with an ID >= this value')] = None |
max_id | Annotated[float | None, FieldInfo(annotation=NoneType, required=True, description='Include only samples with an ID < this value')] = None |
metadata | Annotated[Annotated[str, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Filter samples by metadata key-value pairs, provided as a JSON string. Each item in the filter list is an object with the following properties |
min_date | Annotated[datetime.datetime | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples that where added after the date given')] = None |
max_date | Annotated[datetime.datetime | None, FieldInfo(annotation=NoneType, required=True, description='Only include samples that were added before the date given')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.classify_job_response_page.ClassifyJobResponsePage |
get_sample_window_from_cache
Parameters | |
---|---|
self | |
project_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Project ID')] |
sample_id | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample ID')] |
window_index | Annotated[int, Strict(strict=True), FieldInfo(annotation=NoneType, required=True, description='Sample window index')] |
impulse_id | Annotated[Annotated[int, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='Impulse ID. If this is unset then the default impulse is used.')] = None |
truncate_structured_labels | Annotated[Annotated[bool, Strict(strict=True)] | None, FieldInfo(annotation=NoneType, required=True, description='If true, only a slice of labels will be returned for samples with multiple labels.')] = None |
**kwargs | |
Returns |
---|
edgeimpulse_api.models.get_sample_response.GetSampleResponse |