Classify job result
PreviousGet a window of raw sample features from cache, after a live classification job has completed.NextSingle page of a classify job result
Last updated
Was this helpful?
Last updated
Was this helpful?
Get classify job result, containing the result for the complete testing dataset.
Project ID
Whether to get only the classification results relevant to the feature explorer.
Keras model variant
int8
, float32
, akida
Impulse ID. If this is unset then the default impulse is used.
If true, only a slice of labels will be returned for samples with multiple labels.
curl -L \
--url 'https://studio.edgeimpulse.com/v1/api/{projectId}/classify/all/result' \
--header 'x-api-key: YOUR_API_KEY'
{
"success": true,
"error": "text",
"result": [
{
"sampleId": 1,
"sample": {
"id": 2,
"filename": "idle01.d8Ae",
"signatureValidate": true,
"signatureMethod": "HS256",
"signatureKey": "text",
"created": "2025-03-26T13:04:26.798Z",
"lastModified": "2025-03-26T13:04:26.798Z",
"category": "training",
"coldstorageFilename": "text",
"label": "healthy-machine",
"intervalMs": 16,
"frequency": 62.5,
"originalIntervalMs": 16,
"originalFrequency": 62.5,
"deviceName": "text",
"deviceType": "text",
"sensors": [
{
"name": "accX",
"units": "text"
}
],
"valuesCount": 1,
"totalLengthMs": 1,
"added": "2025-03-26T13:04:26.798Z",
"boundingBoxes": [
{
"label": "text",
"x": 1,
"y": 1,
"width": 1,
"height": 1
}
],
"boundingBoxesType": "object_detection",
"chartType": "chart",
"thumbnailVideo": "text",
"thumbnailVideoFull": "text",
"isDisabled": true,
"isProcessing": true,
"processingJobId": 1,
"processingError": true,
"processingErrorString": "text",
"isCropped": true,
"metadata": {
"ANY_ADDITIONAL_PROPERTY": "text"
},
"projectId": 1,
"projectOwnerName": "text",
"projectName": "text",
"projectLabelingMethod": "single_label",
"sha256Hash": "text",
"structuredLabels": [
{
"startIndex": 1,
"endIndex": 1,
"label": "text"
}
],
"structuredLabelsList": [
"text"
],
"createdBySyntheticDataJobId": 1,
"imageDimensions": {
"width": 1,
"height": 1
}
},
"classifications": [
{
"learnBlock": {
"id": 1,
"type": "anomaly",
"name": "NN Classifier",
"dsp": [
27
],
"title": "Classification (Keras)",
"description": "Reduced learning rate and more layers",
"createdBy": "createImpulse",
"createdAt": "2025-03-26T13:04:26.798Z"
},
"result": [
{
"idle": 0.0002,
"wave": 0.9998,
"anomaly": -0.42
}
],
"anomalyResult": [
{
"boxes": [
{
"label": "text",
"x": 1,
"y": 1,
"width": 1,
"height": 1,
"score": 1
}
],
"scores": [
[
1
]
],
"meanScore": 1,
"maxScore": 1
}
],
"structuredResult": [
{
"boxes": [
[
1
]
],
"labels": [
"text"
],
"scores": [
1
],
"mAP": 1,
"f1": 1,
"precision": 1,
"recall": 1,
"debugInfoJson": "{\n \"y_trues\": [\n {\"x\": 0.854, \"y\": 0.453125, \"label\": 1},\n {\"x\": 0.197, \"y\": 0.53125, \"label\": 2}\n ],\n \"y_preds\": [\n {\"x\": 0.916, \"y\": 0.875, \"label\": 1},\n {\"x\": 0.25, \"y\": 0.541, \"label\": 2}\n ],\n \"assignments\": [\n {\"yp\": 1, \"yt\": 1, \"label\": 2, \"distance\": 0.053}\n ],\n \"normalised_min_distance\": 0.2,\n \"all_pairwise_distances\": [\n [0, 0, 0.426],\n [1, 1, 0.053]\n ],\n \"unassigned_y_true_idxs\": [0],\n \"unassigned_y_pred_idxs\": [0]\n}\n"
}
],
"minimumConfidenceRating": 1,
"details": [
{
"boxes": [
[
1
]
],
"labels": [
1
],
"scores": [
1
],
"mAP": 1,
"f1": 1
}
],
"objectDetectionLastLayer": "mobilenet-ssd",
"expectedLabels": [
{
"startIndex": 1,
"endIndex": 1,
"label": "text"
}
]
}
]
}
],
"predictions": [
{
"sampleId": 1,
"startMs": 1,
"endMs": 1,
"label": "text",
"prediction": "text",
"predictionCorrect": true,
"f1Score": 1,
"anomalyScores": [
[
1
]
]
}
],
"accuracy": {
"totalSummary": {
"good": 1,
"bad": 1
},
"summaryPerClass": {
"ANY_ADDITIONAL_PROPERTY": {
"good": 1,
"bad": 1
}
},
"confusionMatrixValues": {
"ANY_ADDITIONAL_PROPERTY": {
"ANY_ADDITIONAL_PROPERTY": 1
}
},
"allLabels": [
"text"
],
"accuracyScore": 1,
"balancedAccuracyScore": 1,
"anomalyAccuracyScore": 1,
"noAnomalyAccuracyScore": 1,
"mseScore": 1
},
"additionalMetricsByLearnBlock": [
{
"learnBlockId": 1,
"learnBlockName": "text",
"additionalMetrics": [
{
"name": "text",
"value": "text",
"fullPrecisionValue": 1,
"tooltipText": "text",
"link": "text"
}
]
}
],
"availableVariants": [
"int8"
]
}
OK