Single page of a classify job result

Single page of a classify job result

get

Get classify job result, containing the predictions for a given page.

Authorizations
Path parameters
projectIdintegerRequired

Project ID

Query parameters
limitintegerOptional

Maximum number of results

offsetintegerOptional

Offset in results, can be used in conjunction with LimitResultsParameter to implement paging.

variantstring · enumOptional

Keras model variant

Possible values:
impulseIdintegerOptional

Impulse ID. If this is unset then the default impulse is used.

truncateStructuredLabelsbooleanOptional

If true, only a slice of labels will be returned for samples with multiple labels.

labelsstringOptional

Only include samples with a label within the given list of labels, given as a JSON string

Example: ["idle", "snake"]
filenamestringOptional

Only include samples whose filename includes the given filename

maxLengthintegerOptional

Only include samples shorter than the given length, in milliseconds

minLengthintegerOptional

Only include samples longer than the given length, in milliseconds

minFrequencynumberOptional

Only include samples with higher frequency than given frequency, in hertz

maxFrequencynumberOptional

Only include samples with lower frequency than given frequency, in hertz

signatureValiditystring · enumOptional

Include samples with either valid or invalid signatures

Possible values:
minLabelnumberOptional

Only include samples with a label >= this value

maxLabelnumberOptional

Only include samples with a label < this value

searchstringOptional

Search query

Example: <id> <name>
dataTypestring · enumOptional

Include only samples with a particular data type

Possible values:
minIdnumberOptional

Include only samples with an ID >= this value

maxIdnumberOptional

Include only samples with an ID < this value

metadatastringOptional

Filter samples by metadata key-value pairs, provided as a JSON string. Each filter item in the list is combined using a logical OR. To include samples without any metadata, use: { "no_metadata": true }.

Example: ["[{ \"key\": \"locationId\", \"op\": \"eq\", \"values\": [\"buildingA\"] }, { \"key\": \"deviceId\", \"op\": \"neq\", \"values\": [\"val1\", \"val2\"] }]","[{ \"key\": \"distance\", \"op\": \"eq\", \"values\": [\"1.5\", \"2.9\"], \"key\": \"comments\", exclude: [\"faulty\"] }]","[{ \"key\": \"nullKeyExample\", \"op\": \"eq\" }]","[{ \"key\": \"presentKeyExample\", \"op\": \"neq\" }]","[{ \"no_metadata\": true }]"]
minDatestring · date-timeOptional

Only include samples that where added after the date given

Example: 2023-01-01T00:00:00.000Z
maxDatestring · date-timeOptional

Only include samples that were added before the date given

Example: 2024-12-31T00:00:00.000Z
Responses
200
OK
application/json
Responseall of
get
GET /v1/api/{projectId}/classify/all/result/page HTTP/1.1
Host: studio.edgeimpulse.com
x-api-key: YOUR_API_KEY
Accept: */*
200

OK

{
  "success": true,
  "error": "text",
  "result": [
    {
      "sampleId": 1,
      "sample": {
        "id": 2,
        "filename": "idle01.d8Ae",
        "signatureValidate": true,
        "signatureMethod": "HS256",
        "signatureKey": "text",
        "created": "2025-08-04T17:20:52.017Z",
        "lastModified": "2025-08-04T17:20:52.017Z",
        "category": "training",
        "coldstorageFilename": "text",
        "label": "healthy-machine",
        "intervalMs": 16,
        "frequency": 62.5,
        "originalIntervalMs": 16,
        "originalFrequency": 62.5,
        "deviceName": "text",
        "deviceType": "text",
        "sensors": [
          {
            "name": "accX",
            "units": "text"
          }
        ],
        "valuesCount": 1,
        "totalLengthMs": 1,
        "added": "2025-08-04T17:20:52.017Z",
        "boundingBoxes": [
          {
            "label": "text",
            "x": 1,
            "y": 1,
            "width": 1,
            "height": 1
          }
        ],
        "boundingBoxesType": "object_detection",
        "chartType": "chart",
        "thumbnailVideo": "text",
        "thumbnailVideoFull": "text",
        "isDisabled": true,
        "isProcessing": true,
        "processingJobId": 1,
        "processingError": true,
        "processingErrorString": "text",
        "isCropped": true,
        "metadata": {
          "ANY_ADDITIONAL_PROPERTY": "text"
        },
        "projectId": 1,
        "projectOwnerName": "text",
        "projectName": "text",
        "projectLabelingMethod": "single_label",
        "sha256Hash": "text",
        "structuredLabels": [
          {
            "startIndex": 1,
            "endIndex": 1,
            "label": "text"
          }
        ],
        "structuredLabelsList": [
          "text"
        ],
        "createdBySyntheticDataJobId": 1,
        "imageDimensions": {
          "width": 1,
          "height": 1
        },
        "videoUrl": "text",
        "videoUrlFull": "text"
      },
      "classifications": [
        {
          "learnBlock": {
            "id": 1,
            "type": "anomaly",
            "name": "NN Classifier",
            "dsp": [
              27
            ],
            "title": "Classification (Keras)",
            "createdBy": "createImpulse",
            "createdAt": "2025-08-04T17:20:52.017Z"
          },
          "result": [
            {
              "idle": 0.0002,
              "wave": 0.9998,
              "anomaly": -0.42
            }
          ],
          "anomalyResult": [
            {
              "boxes": [
                {
                  "label": "text",
                  "x": 1,
                  "y": 1,
                  "width": 1,
                  "height": 1,
                  "score": 1
                }
              ],
              "scores": [
                [
                  1
                ]
              ],
              "meanScore": 1,
              "maxScore": 1
            }
          ],
          "structuredResult": [
            {
              "boxes": [
                [
                  1
                ]
              ],
              "labels": [
                "text"
              ],
              "scores": [
                1
              ],
              "mAP": 1,
              "f1": 1,
              "precision": 1,
              "recall": 1,
              "debugInfoJson": "{\n    \"y_trues\": [\n        {\"x\": 0.854, \"y\": 0.453125, \"label\": 1},\n        {\"x\": 0.197, \"y\": 0.53125, \"label\": 2}\n    ],\n    \"y_preds\": [\n        {\"x\": 0.916, \"y\": 0.875, \"label\": 1},\n        {\"x\": 0.25, \"y\": 0.541, \"label\": 2}\n    ],\n    \"assignments\": [\n        {\"yp\": 1, \"yt\": 1, \"label\": 2, \"distance\": 0.053}\n    ],\n    \"normalised_min_distance\": 0.2,\n    \"all_pairwise_distances\": [\n        [0, 0, 0.426],\n        [1, 1, 0.053]\n    ],\n    \"unassigned_y_true_idxs\": [0],\n    \"unassigned_y_pred_idxs\": [0]\n}\n"
            }
          ],
          "minimumConfidenceRating": 1,
          "details": [
            {
              "boxes": [
                [
                  1
                ]
              ],
              "labels": [
                1
              ],
              "scores": [
                1
              ],
              "mAP": 1,
              "f1": 1
            }
          ],
          "objectDetectionLastLayer": "mobilenet-ssd",
          "expectedLabels": [
            {
              "startIndex": 1,
              "endIndex": 1,
              "label": "text"
            }
          ],
          "thresholds": [
            {
              "key": "min_score",
              "description": "Score threshold",
              "helpText": "Threshold score for bounding boxes. If the score for a bounding box is below this the box will be discarded.",
              "suggestedValue": 1,
              "suggestedValueText": "text",
              "value": 0.5
            }
          ]
        }
      ]
    }
  ],
  "predictions": [
    {
      "sampleId": 1,
      "startMs": 1,
      "endMs": 1,
      "label": "text",
      "prediction": "text",
      "predictionCorrect": true,
      "f1Score": 1,
      "anomalyScores": [
        [
          1
        ]
      ]
    }
  ]
}

Last updated

Was this helpful?