Classify sample for the given set of variants

Classify sample for the given set of variants

post

Classify a complete file against the current impulse, for all given variants. Depending on the size of your file and whether the sample is resampled, you may get a job ID in the response.

Authorizations
Path parameters
projectIdintegerRequired

Project ID

sampleIdintegerRequired

Sample ID

Query parameters
includeDebugInfobooleanOptional

Whether to return the debug information from FOMO classification.

variantsstringRequired

List of keras model variants, given as a JSON string

Example: ["int8", "float32"]
impulseIdintegerOptional

Impulse ID. If this is unset then the default impulse is used.

truncateStructuredLabelsbooleanOptional

If true, only a slice of labels will be returned for samples with multiple labels.

Responses
200
OK
application/json
Responseany of
all ofOptional
or
all ofOptional
post
POST /v1/api/{projectId}/classify/v2/{sampleId}/variants HTTP/1.1
Host: studio.edgeimpulse.com
x-api-key: YOUR_API_KEY
Accept: */*
200

OK

{
  "success": true,
  "error": "text",
  "results": [
    {
      "variant": "int8",
      "classifications": [
        {
          "learnBlock": {
            "id": 1,
            "type": "anomaly",
            "name": "NN Classifier",
            "dsp": [
              27
            ],
            "title": "Classification (Keras)",
            "createdBy": "createImpulse",
            "createdAt": "2025-07-12T02:33:48.554Z"
          },
          "result": [
            {
              "idle": 0.0002,
              "wave": 0.9998,
              "anomaly": -0.42
            }
          ],
          "anomalyResult": [
            {
              "boxes": [
                {
                  "label": "text",
                  "x": 1,
                  "y": 1,
                  "width": 1,
                  "height": 1,
                  "score": 1
                }
              ],
              "scores": [
                [
                  1
                ]
              ],
              "meanScore": 1,
              "maxScore": 1
            }
          ],
          "structuredResult": [
            {
              "boxes": [
                [
                  1
                ]
              ],
              "labels": [
                "text"
              ],
              "scores": [
                1
              ],
              "mAP": 1,
              "f1": 1,
              "precision": 1,
              "recall": 1,
              "debugInfoJson": "{\n    \"y_trues\": [\n        {\"x\": 0.854, \"y\": 0.453125, \"label\": 1},\n        {\"x\": 0.197, \"y\": 0.53125, \"label\": 2}\n    ],\n    \"y_preds\": [\n        {\"x\": 0.916, \"y\": 0.875, \"label\": 1},\n        {\"x\": 0.25, \"y\": 0.541, \"label\": 2}\n    ],\n    \"assignments\": [\n        {\"yp\": 1, \"yt\": 1, \"label\": 2, \"distance\": 0.053}\n    ],\n    \"normalised_min_distance\": 0.2,\n    \"all_pairwise_distances\": [\n        [0, 0, 0.426],\n        [1, 1, 0.053]\n    ],\n    \"unassigned_y_true_idxs\": [0],\n    \"unassigned_y_pred_idxs\": [0]\n}\n"
            }
          ],
          "minimumConfidenceRating": 1,
          "details": [
            {
              "boxes": [
                [
                  1
                ]
              ],
              "labels": [
                1
              ],
              "scores": [
                1
              ],
              "mAP": 1,
              "f1": 1
            }
          ],
          "objectDetectionLastLayer": "mobilenet-ssd",
          "expectedLabels": [
            {
              "startIndex": 1,
              "endIndex": 1,
              "label": "text"
            }
          ],
          "thresholds": [
            {
              "key": "min_score",
              "description": "Score threshold",
              "helpText": "Threshold score for bounding boxes. If the score for a bounding box is below this the box will be discarded.",
              "suggestedValue": 1,
              "suggestedValueText": "text",
              "value": 0.5
            }
          ]
        }
      ]
    }
  ],
  "sample": {
    "sample": {
      "id": 2,
      "filename": "idle01.d8Ae",
      "signatureValidate": true,
      "signatureMethod": "HS256",
      "signatureKey": "text",
      "created": "2025-07-12T02:33:48.554Z",
      "lastModified": "2025-07-12T02:33:48.554Z",
      "category": "training",
      "coldstorageFilename": "text",
      "label": "healthy-machine",
      "intervalMs": 16,
      "frequency": 62.5,
      "originalIntervalMs": 16,
      "originalFrequency": 62.5,
      "deviceName": "text",
      "deviceType": "text",
      "sensors": [
        {
          "name": "accX",
          "units": "text"
        }
      ],
      "valuesCount": 1,
      "totalLengthMs": 1,
      "added": "2025-07-12T02:33:48.554Z",
      "boundingBoxes": [
        {
          "label": "text",
          "x": 1,
          "y": 1,
          "width": 1,
          "height": 1
        }
      ],
      "boundingBoxesType": "object_detection",
      "chartType": "chart",
      "thumbnailVideo": "text",
      "thumbnailVideoFull": "text",
      "isDisabled": true,
      "isProcessing": true,
      "processingJobId": 1,
      "processingError": true,
      "processingErrorString": "text",
      "isCropped": true,
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "text"
      },
      "projectId": 1,
      "projectOwnerName": "text",
      "projectName": "text",
      "projectLabelingMethod": "single_label",
      "sha256Hash": "text",
      "structuredLabels": [
        {
          "startIndex": 1,
          "endIndex": 1,
          "label": "text"
        }
      ],
      "structuredLabelsList": [
        "text"
      ],
      "createdBySyntheticDataJobId": 1,
      "imageDimensions": {
        "width": 1,
        "height": 1
      },
      "videoUrl": "text",
      "videoUrlFull": "text"
    },
    "payload": {
      "device_name": "ac:87:a3:0a:2d:1b",
      "device_type": "DISCO-L475VG-IOT01A",
      "sensors": [
        {
          "name": "accX",
          "units": "text"
        }
      ],
      "values": [
        [
          1
        ]
      ],
      "cropStart": 0,
      "cropEnd": 128
    },
    "totalPayloadLength": 1
  },
  "windowSizeMs": 2996,
  "windowIncreaseMs": 10,
  "alreadyInDatabase": true
}

Last updated

Was this helpful?