Classify sample

Classify sample

post

Classify a complete file against the current impulse. This will move the sliding window (dependent on the sliding window length and the sliding window increase parameters in the impulse) over the complete file, and classify for every window that is extracted. Depending on the size of your file, whether your sample is resampled, and whether the result is cached you'll get either the result or a job back. If you receive a job, then wait for the completion of the job, and then call this function again to receive the results. The unoptimized (float32) model is used by default, and classification with an optimized (int8) model can be slower.

Authorizations
Path parameters
projectIdintegerRequired

Project ID

sampleIdintegerRequired

Sample ID

Query parameters
includeDebugInfobooleanOptional

Whether to return the debug information from FOMO classification.

variantstring · enumOptional

Keras model variant

Possible values:
impulseIdintegerOptional

Impulse ID. If this is unset then the default impulse is used.

truncateStructuredLabelsbooleanOptional

If true, only a slice of labels will be returned for samples with multiple labels.

Responses
200
OK
application/json
Responseany of
all ofOptional
or
all ofOptional
post
POST /v1/api/{projectId}/classify/v2/{sampleId} HTTP/1.1
Host: studio.edgeimpulse.com
x-api-key: YOUR_API_KEY
Accept: */*
200

OK

{
  "success": true,
  "error": "text",
  "classifications": [
    {
      "learnBlock": {
        "id": 1,
        "type": "anomaly",
        "name": "NN Classifier",
        "dsp": [
          27
        ],
        "title": "Classification (Keras)",
        "createdBy": "createImpulse",
        "createdAt": "2025-07-05T10:55:49.547Z"
      },
      "result": [
        {
          "idle": 0.0002,
          "wave": 0.9998,
          "anomaly": -0.42
        }
      ],
      "anomalyResult": [
        {
          "boxes": [
            {
              "label": "text",
              "x": 1,
              "y": 1,
              "width": 1,
              "height": 1,
              "score": 1
            }
          ],
          "scores": [
            [
              1
            ]
          ],
          "meanScore": 1,
          "maxScore": 1
        }
      ],
      "structuredResult": [
        {
          "boxes": [
            [
              1
            ]
          ],
          "labels": [
            "text"
          ],
          "scores": [
            1
          ],
          "mAP": 1,
          "f1": 1,
          "precision": 1,
          "recall": 1,
          "debugInfoJson": "{\n    \"y_trues\": [\n        {\"x\": 0.854, \"y\": 0.453125, \"label\": 1},\n        {\"x\": 0.197, \"y\": 0.53125, \"label\": 2}\n    ],\n    \"y_preds\": [\n        {\"x\": 0.916, \"y\": 0.875, \"label\": 1},\n        {\"x\": 0.25, \"y\": 0.541, \"label\": 2}\n    ],\n    \"assignments\": [\n        {\"yp\": 1, \"yt\": 1, \"label\": 2, \"distance\": 0.053}\n    ],\n    \"normalised_min_distance\": 0.2,\n    \"all_pairwise_distances\": [\n        [0, 0, 0.426],\n        [1, 1, 0.053]\n    ],\n    \"unassigned_y_true_idxs\": [0],\n    \"unassigned_y_pred_idxs\": [0]\n}\n"
        }
      ],
      "minimumConfidenceRating": 1,
      "details": [
        {
          "boxes": [
            [
              1
            ]
          ],
          "labels": [
            1
          ],
          "scores": [
            1
          ],
          "mAP": 1,
          "f1": 1
        }
      ],
      "objectDetectionLastLayer": "mobilenet-ssd",
      "expectedLabels": [
        {
          "startIndex": 1,
          "endIndex": 1,
          "label": "text"
        }
      ],
      "thresholds": [
        {
          "key": "min_score",
          "description": "Score threshold",
          "helpText": "Threshold score for bounding boxes. If the score for a bounding box is below this the box will be discarded.",
          "suggestedValue": 1,
          "suggestedValueText": "text",
          "value": 0.5
        }
      ]
    }
  ],
  "sample": {
    "sample": {
      "id": 2,
      "filename": "idle01.d8Ae",
      "signatureValidate": true,
      "signatureMethod": "HS256",
      "signatureKey": "text",
      "created": "2025-07-05T10:55:49.547Z",
      "lastModified": "2025-07-05T10:55:49.547Z",
      "category": "training",
      "coldstorageFilename": "text",
      "label": "healthy-machine",
      "intervalMs": 16,
      "frequency": 62.5,
      "originalIntervalMs": 16,
      "originalFrequency": 62.5,
      "deviceName": "text",
      "deviceType": "text",
      "sensors": [
        {
          "name": "accX",
          "units": "text"
        }
      ],
      "valuesCount": 1,
      "totalLengthMs": 1,
      "added": "2025-07-05T10:55:49.547Z",
      "boundingBoxes": [
        {
          "label": "text",
          "x": 1,
          "y": 1,
          "width": 1,
          "height": 1
        }
      ],
      "boundingBoxesType": "object_detection",
      "chartType": "chart",
      "thumbnailVideo": "text",
      "thumbnailVideoFull": "text",
      "isDisabled": true,
      "isProcessing": true,
      "processingJobId": 1,
      "processingError": true,
      "processingErrorString": "text",
      "isCropped": true,
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "text"
      },
      "projectId": 1,
      "projectOwnerName": "text",
      "projectName": "text",
      "projectLabelingMethod": "single_label",
      "sha256Hash": "text",
      "structuredLabels": [
        {
          "startIndex": 1,
          "endIndex": 1,
          "label": "text"
        }
      ],
      "structuredLabelsList": [
        "text"
      ],
      "createdBySyntheticDataJobId": 1,
      "imageDimensions": {
        "width": 1,
        "height": 1
      },
      "videoUrl": "text",
      "videoUrlFull": "text"
    },
    "payload": {
      "device_name": "ac:87:a3:0a:2d:1b",
      "device_type": "DISCO-L475VG-IOT01A",
      "sensors": [
        {
          "name": "accX",
          "units": "text"
        }
      ],
      "values": [
        [
          1
        ]
      ],
      "cropStart": 0,
      "cropEnd": 128
    },
    "totalPayloadLength": 1
  },
  "windowSizeMs": 2996,
  "windowIncreaseMs": 10,
  "alreadyInDatabase": true,
  "warning": "text"
}

Last updated

Was this helpful?