Modules

Functions

delete_all_samples

edgeimpulse.data.delete_all_samples(
	category: str | None = None,
	api_key: str | None = None,
	timeout_sec: float | None = None
) ‑> edgeimpulse_api.models.generic_api_response.GenericApiResponse | None
Delete all samples in a given category. If category is set to None, all samples in the project are deleted.
Parameters
categorystr | None = None
api_keystr | None = None
timeout_secfloat | None = None
Returns
edgeimpulse_api.models.generic_api_response.GenericApiResponse | None

delete_sample_by_id

edgeimpulse.data.delete_sample_by_id(
	sample_id: int,
	api_key: str | None = None,
	timeout_sec: float | None = None
) ‑> edgeimpulse_api.models.generic_api_response.GenericApiResponse | None
Delete a particular sample from a project given the sample ID.
Parameters
sample_idint
api_keystr | None = None
timeout_secfloat | None = None
Returns
edgeimpulse_api.models.generic_api_response.GenericApiResponse | None

delete_samples_by_filename

edgeimpulse.data.delete_samples_by_filename(
	filename: str,
	category: str | None = None,
	api_key: str | None = None,
	timeout_sec: float | None = None
) ‑> Tuple[Any | None...]
Delete any samples from an Edge Impulse project that match the given filename. Note: the filename argument must not include the original extension. For example, if you uploaded a file named my-image.01.png, you must provide the filename as my-image.01.
Parameters
filenamestr
categorystr | None = None
api_keystr | None = None
timeout_secfloat | None = None
Returns
Tuple[Any | None, ...]

download_samples_by_ids

edgeimpulse.data.download_samples_by_ids(
	sample_ids: int | List[int],
	api_key: str | None = None,
	timeout_sec: float | None = None,
	max_workers: int | None = None,
	show_progress: bool | None = False,
	pool_maxsize: int | None = 20,
	pool_connections: int | None = 20
) ‑> List[edgeimpulse.data.sample_type.Sample]
Download samples by their associated IDs from an Edge Impulse project. Downloaded sample data is returned as a DownloadSample object, which contains the raw data in a BytesIO object along with associated metadata. Important! All time series data is returned as a JSON file (in BytesIO format) with a timestamp column. This includes files originally uploaded as CSV, JSON, and CBOR. Edge Impulse Studio removes the timestamp column from any uploaded CSV files and computes an estimated sample rate. The timestamps are computed based on the sample rate, will always start at 0, and will be in milliseconds. These timestamps may not be the same as the original timestamps in the uploaded file.
Parameters
sample_idsint | List[int]
api_keystr | None = None
timeout_secfloat | None = None
max_workersint | None = None
show_progressbool | None = False
pool_maxsizeint | None = 20
pool_connectionsint | None = 20
Returns
List[edgeimpulse.data.sample_type.Sample]

get_filename_by_id

edgeimpulse.data.get_filename_by_id(
	sample_id: int,
	api_key: str | None = None,
	timeout_sec: float | None = None
) ‑> str | None
Given an ID for a sample in a project, return the filename associated with that sample. Note that while multiple samples can have the same filename, each sample has a unique sample ID that is provided by Studio when the sample is uploaded.
Parameters
sample_idint
api_keystr | None = None
timeout_secfloat | None = None
Returns
str | None

get_sample_ids

edgeimpulse.data.get_sample_ids(
	filename: str | None = None,
	category: str | None = None,
	labels: str | None = None,
	api_key: str | None = None,
	num_workers: int | None = 4,
	timeout_sec: float | None = None
) ‑> List[edgeimpulse.data.sample_type.SampleInfo]
Get the sample IDs and filenames for all samples in a project, filtered by category, labels, or filename. Note that filenames are given by the root of the filename when uploaded. For example, if you upload my-image.01.png, it will be stored in your project with a hash such as my-image.01.png.4f262n1b.json. To find the ID(s) that match this sample, you must provide the argument filename=my-image.01. Notice the lack of extension and hash. Because of the potential for multiple samples (i.e., different sample IDs) with the same filename, we recommend providing unique filenames for your samples when uploading.
Parameters
filenamestr | None = None
categorystr | None = None
labelsstr | None = None
api_keystr | None = None
num_workersint | None = 4
timeout_secfloat | None = None
Returns
List[edgeimpulse.data.sample_type.SampleInfo]

infer_from_filename

edgeimpulse.data.infer_from_filename(
	sample: edgeimpulse.data.sample_type.Sample,
	filestr
) ‑> None
Extract label and category information from the filename and assigns them to the sample object. Files should look like this my-dataset/training/wave.1.cbor where wave is the label and training is the category. It checks if there is training, testing or anomaly in the filename to determine the sample category.
Parameters
sampleedgeimpulse.data.sample_type.Sample
filestr
Returns
None

numpy_timeseries_to_sample

edgeimpulse.data.numpy_timeseries_to_sample(
	values,
	sensors: List[edgeimpulse.data.sample_type.Sensor],
	sample_rate_ms: int
) ‑> edgeimpulse.data.sample_type.Sample
Convert numpy values to a sample that can be uploaded to Edge Impulse.
Parameters
values
sensorsList[edgeimpulse.data.sample_type.Sensor]
sample_rate_msint
Returns
edgeimpulse.data.sample_type.Sample

pandas_dataframe_to_sample

edgeimpulse.data.pandas_dataframe_to_sample(
	df,
	sample_rate_ms: int | None = None,
	label: str | None = None,
	filename: str | None = None,
	axis_columns: List[str| None = None,
	metadata: dict | None = None,
	label_col: str | None = None,
	category: Literal['training''testing''split'= 'split'
) ‑> edgeimpulse.data.sample_type.Sample
Convert a dataframe to a single sample. Can handle both timeseries and non-timeseries data. In order to be inferred as timeseries it must have:
  • More than one row
  • A sample rate or an index from which the sample rate can be inferred
    • Therefore must be monotonically increasing
    • And int or a date
Parameters
df
sample_rate_msint | None = None
labelstr | None = None
filenamestr | None = None
axis_columnsList[str] | None = None
metadatadict | None = None
label_colstr | None = None
categoryLiteral['training', 'testing', 'split'] = 'split'
Returns
edgeimpulse.data.sample_type.Sample

upload_directory

edgeimpulse.data.upload_directory(
	directory: str,
	category: str | None = None,
	label: str | None = None,
	metadata: dict | None = None,
	transform: <built-in function callable> | None = None,
	allow_duplicates: bool | None = False,
	show_progress: bool | None = False,
	batch_size: int | None = 1024
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a directory of files to Edge Impulse. Tries to autodetect whether it’s an Edge Impulse exported dataset, or a standard directory. The files can be in CBOR, JSON, image, or WAV file formats. You can read more about the different file formats accepted by the Edge Impulse ingestion service here: https://docs.edgeimpulse.com/reference/ingestion-api
Parameters
directorystr
categorystr | None = None
labelstr | None = None
metadatadict | None = None
transform<built-in function callable> | None = None
allow_duplicatesbool | None = False
show_progressbool | None = False
batch_sizeint | None = 1024
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_exported_dataset

edgeimpulse.data.upload_exported_dataset(
	directory: str,
	transform: <built-in function callable> | None = None,
	allow_duplicates: bool | None = False,
	show_progress: bool | None = False,
	batch_size: int | None = 1024
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload samples from a downloaded Edge Impulse dataset and preserve the info.labels information. Use this when you’ve exported your data in the studio, via the export functionality.
Parameters
directorystr
transform<built-in function callable> | None = None
allow_duplicatesbool | None = False
show_progressbool | None = False
batch_sizeint | None = 1024
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_numpy

edgeimpulse.data.upload_numpy(
	data,
	labels: List[str],
	sensors: List[edgeimpulse.data.sample_type.Sensor],
	sample_rate_ms: int,
	metadata: dict | None = None,
	category: Literal['training''testing''split''anomaly'= 'split'
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload numpy arrays as timeseries using the Edge Impulse data acquisition format.
Parameters
data
labelsList[str]
sensorsList[edgeimpulse.data.sample_type.Sensor]
sample_rate_msint
metadatadict | None = None
categoryLiteral['training', 'testing', 'split', 'anomaly'] = 'split'
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_pandas_dataframe

edgeimpulse.data.upload_pandas_dataframe(
	df,
	feature_cols: List[str],
	label_col: str | None = None,
	category_col: str | None = None,
	metadata_cols: List[str| None = None
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload non-timeseries data to Edge Impulse where each dataframe row becomes a sample.
Parameters
df
feature_colsList[str]
label_colstr | None = None
category_colstr | None = None
metadata_colsList[str] | None = None
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_pandas_dataframe_wide

edgeimpulse.data.upload_pandas_dataframe_wide(
	df,
	sample_rate_ms: int,
	data_col_start: int | None = None,
	label_col: str | None = None,
	category_col: str | None = None,
	metadata_cols: List[str| None = None,
	data_col_length: int | None = None,
	data_axis_cols: List[str| None = None
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a dataframe to Edge Impulse where each column represents a value in the timeseries data and the rows become the individual samples.
Parameters
df
sample_rate_msint
data_col_startint | None = None
label_colstr | None = None
category_colstr | None = None
metadata_colsList[str] | None = None
data_col_lengthint | None = None
data_axis_colsList[str] | None = None
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_pandas_dataframe_with_group

edgeimpulse.data.upload_pandas_dataframe_with_group(
	df,
	timestamp_col: str,
	group_by: str,
	feature_cols: List[str],
	label_col: str | None = None,
	category_col: str | None = None,
	metadata_cols: List[str| None = None
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a dataframe where the rows contain multiple samples and timeseries data for those samples. It uses a group_by in order to detect what timeseries value belongs to which sample.
Parameters
df
timestamp_colstr
group_bystr
feature_colsList[str]
label_colstr | None = None
category_colstr | None = None
metadata_colsList[str] | None = None
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_pandas_sample

edgeimpulse.data.upload_pandas_sample(
	df,
	label: str | None = None,
	sample_rate_ms: int | None = None,
	filename: str | None = None,
	axis_columns: List[str| None = None,
	metadata: dict | None = None,
	label_col: str | None = None,
	category: Literal['training''testing''split'= 'split'
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a single dataframe sample. Upload a single dataframe sample to Edge Impulse.
Parameters
df
labelstr | None = None
sample_rate_msint | None = None
filenamestr | None = None
axis_columnsList[str] | None = None
metadatadict | None = None
label_colstr | None = None
categoryLiteral['training', 'testing', 'split'] = 'split'
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_plain_directory

edgeimpulse.data.upload_plain_directory(
	directory: str,
	category: str | None = None,
	label: str | None = None,
	metadata: dict | None = None,
	transform: <built-in function callable> | None = None,
	allow_duplicates: bool | None = False,
	show_progress: bool | None = False,
	batch_size: int | None = 1024
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a directory of files to Edge Impulse. The samples can be in CBOR, JSON, image, or WAV file formats.
Parameters
directorystr
categorystr | None = None
labelstr | None = None
metadatadict | None = None
transform<built-in function callable> | None = None
allow_duplicatesbool | None = False
show_progressbool | None = False
batch_sizeint | None = 1024
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

upload_samples

edgeimpulse.data.upload_samples(
	samples: edgeimpulse.data.sample_type.Sample | List[edgeimpulse.data.sample_type.Sample],
	allow_duplicates: bool | None = False,
	api_key: str | None = None,
	timeout_sec: float | None = None,
	max_workers: int | None = None,
	show_progress: bool | None = False,
	pool_maxsize: int | None = 20,
	pool_connections: int | None = 20
) ‑> edgeimpulse.data.sample_type.UploadSamplesResponse
Upload one or more samples to an Edge Impulse project using the ingestion service. Each sample must be wrapped in a Sample object, which contains metadata about that sample. Give this function a single Sample or a List of Sample objects to upload to your project. The data field of the Sample must be a raw binary stream, such as a BufferedIOBase object (which you can create with the open(..., "rb") function).
Parameters
samplesedgeimpulse.data.sample_type.Sample | List[edgeimpulse.data.sample_type.Sample]
allow_duplicatesbool | None = False
api_keystr | None = None
timeout_secfloat | None = None
max_workersint | None = None
show_progressbool | None = False
pool_maxsizeint | None = 20
pool_connectionsint | None = 20
Returns
edgeimpulse.data.sample_type.UploadSamplesResponse

Classes

Sample

edgeimpulse.data.Sample(
	data: io.BufferedIOBase | _io.StringIO | str,
	filename: str | None = None,
	category: Literal['training''testing''anomaly''split'| None = 'split',
	label: str | None = None,
	bounding_boxes: List[dict| None = None,
	metadata: dict | None = None,
	sample_id: int | None = None,
	structured_labels: List[dict| None = None
)
Wrapper class for sample data, labels, and associated metadata. Sample data should be contained in a file or file-like object, for example, as the return from open(..., "rb"). The upload_samples() function expects Sample objects as input.
Parameters
dataio.BufferedIOBase | _io.StringIO | str
filenamestr | None = None
categoryLiteral['training', 'testing', 'anomaly', 'split'] | None = 'split'
labelstr | None = None
bounding_boxesList[dict] | None = None
metadatadict | None = None
sample_idint | None = None
structured_labelsList[dict] | None = None
Instance variables
bounding_boxesList[dict] | None
categoryLiteral['training', 'testing', 'anomaly', 'split'] | None
dataio.BufferedIOBase | _io.StringIO | str
filenamestr | None
labelstr | None
metadatadict | None
sample_idint | None
structured_labelsList[dict] | None