edgeimpulse.util.check_response_errors( request )
edgeimpulse.util.configure_generic_client( key: str, key_type: str | None = 'api', host: str | None = 'https://studio.edgeimpulse.com/v1' ) ‑> edgeimpulse_api.api_client.ApiClient
edgeimpulse.util.connect_websocket( token, host: str = None ) ‑> socketio.client.Client
edgeimpulse.util.default_project_id_for( client: edgeimpulse_api.api_client.ApiClient ) ‑> int
edgeimpulse.util.encode_file_as_base64( filename: str )
edgeimpulse.util.get_organization_websocket( client, organization_id: int, host: str = None ) ‑> socketio.client.Client
edgeimpulse.util.get_profile_devices( client: edgeimpulse_api.api_client.ApiClient, project_id: int | None = None ) ‑> List[str]
edgeimpulse.util.get_project_deploy_targets( client: edgeimpulse_api.api_client.ApiClient, project_id: int | None = None ) ‑> List[str]
edgeimpulse.util.get_project_websocket( client, project_id: int, host: str = None ) ‑> socketio.client.Client
edgeimpulse.util.get_user_agent( add_platform_info=False )
edgeimpulse.util.inspect_model( model: pathlib._local.Path | str | bytes | Any, tempdir: str ) ‑> Tuple[str, str]
edgeimpulse.util.inspect_representative_data( data: pathlib._local.Path | str | bytes | Any ) ‑> str | None
edgeimpulse.util.is_keras_model( model )
edgeimpulse.util.is_numpy_array( array )
edgeimpulse.util.is_onnx_model( model )
edgeimpulse.util.is_path_to_numpy_file( path )
edgeimpulse.util.is_path_to_onnx_model( path )
edgeimpulse.util.is_path_to_tf_saved_model_directory( model_dir )
edgeimpulse.util.is_path_to_tf_saved_model_zipped( model )
edgeimpulse.util.is_type_accepted_by_open( path )
Path
edgeimpulse.util.make_zip_archive( saved_model_path )
edgeimpulse.util.numpy_installed( ) ‑> bool
edgeimpulse.util.onnx_installed( ) ‑> bool
edgeimpulse.util.pandas_installed( ) ‑> bool
edgeimpulse.util.poll( jobs_client: edgeimpulse_api.api.jobs_api.JobsApi, project_id: int, job_id: int, timeout_sec: float | None = None ) ‑> edgeimpulse_api.models.get_job_response.GetJobResponse
edgeimpulse.util.run_job_until_completion( ws, job_id: int, data_cb=None, timeout_sec: int | None = None )
edgeimpulse.util.run_organization_job_until_completion( organization_id: int, job_id: int, data_cb=None, client=None, timeout_sec: int | None = None ) ‑> None
edgeimpulse.util.run_project_job_until_completion( job_id: int, data_cb=None, client=None, project_id: int | None = None, timeout_sec: int | None = None ) ‑> None
edgeimpulse.util.save_model( model: pathlib._local.Path | str | bytes, directory: str ) ‑> str
edgeimpulse.util.save_representative_data( data: pathlib._local.Path | str | bytes, directory: str ) ‑> str
edgeimpulse.util.tensorflow_installed( ) ‑> bool
edgeimpulse.util.upload_pretrained_model_and_data( tempdir: str, client: edgeimpulse_api.api_client.ApiClient, project_id: int, model: pathlib._local.Path | str | bytes | Any, representative_data: pathlib._local.Path | str | bytes | Any | None = None, device: str | None = None, timeout_sec: float | None = None ) ‑> edgeimpulse_api.models.get_job_response.GetJobResponse