LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Machine learning training and deployment
  • Benefits of edge AI
  • Limitations of edge AI
  • Examples of edge AI
  • Market size
  • Going further
  • Quiz
  1. Concepts
  2. Edge AI

What is edge AI?

PreviousWhat is machine learning (ML)?NextHow to choose an edge AI device

Last updated 6 months ago

Edge AI is the development and deployment of artificial intelligence (AI) algorithms and programs on edge devices. It is a form of where data is analyzed and processed near where the data is generated or collected. Edge AI contrasts cloud-based AI, which involves data being transmitted across the internet to be processed on a remote server.

Machine learning training and deployment

In , data is fed into the training process. For supervised learning, the ground-truth labels are also provided along with each sample. The training algorithm automatically updates the parameters (also known as "weights") in the ML model.

During each step of the training process, we evaluate the model to see how good it is at predicting the correct label given some data. Over time, we ideally want this accuracy to increase to some acceptable level. In most cases, training a machine learning model is computationally expensive, and training does not need to be performed on an edge device. As a result, we can do model training in the cloud with the help of powerful accelerator hardware, such as graphics processing units (GPUs).

Once we are happy with the performance of the model, we can deploy it to our end device. At this point, the model accepts new, never-before-seen data and produces an output. For supervised learning and classification, this output is a label that the model believes most accurately represents the input data. In regression, this output is a numerical value (or values). This process of making predictions based on new data after training is known as inference.

In traditional, cloud-based ML model deployment, inference is run on a remote server. Clients connect to the inference service, supply new data along with their request, and the server responds with the result. This cloud-based inference process is known as prediction serving.

In the majority of cases, inference is not nearly as computationally intensive as training. As a result, we could run inference on an edge device instead of on a powerful cloud server.

Because edge devices often offer less compute power than their cloud counterparts, ML models trained for the edge often need to be less complex. With that in mind, edge AI offers several benefits over cloud AI.

Benefits of edge AI

Assuming that you can run your ML model on an edge device, such as a laptop, smartphone, single-board computer, or embedded Internet of Things (IoT) device, edge AI has the following advantages over a cloud-based approach:

  • Reduced bandwidth - Rather than transmitting raw data over the network, you can perform inference on the edge device directly. From there, you would only need to transmit the results, which is often much less data than the raw input.

  • Reduced latency - Transmitting data across networks (including the internet) can take time, as that data has to travel through multiple switches, routers, and servers. The round trip latency is often measured in 100s of milliseconds when waiting for a response from a cloud server. On the other hand, there is little or no network latency with edge AI, as inference is performed on or relatively close to where the data was collected.

  • Increased reliability - If you are operating in an environment with little or no internet connection, your edge devices can still continue to operate. This is important in remote environments or applications like self-driving cars.

  • Improved data privacy - While IoT devices require care when implementing security plans, you can rest assured that your raw data does not leave your device or edge network. Users can raw data, such as images of their faces, is not leaving the network to be intercepted by malicious actors.

Just like with edge computing, the benefits can be summarized by the acronym BLERP: bandwidth, latency, energy usage, reliability, and privacy.

Limitations of edge AI

Edge AI has a number of limitations that you should take into consideration and, you should weigh your options carefully versus cloud deployment.

  • Resource constraints - In general, edge devices offer fewer computational resources than their cloud-based counterparts. Cloud servers can offer powerful processors and large amounts of memory. If your ML model cannot be optimized or constrained to run on an edge device, you should consider a cloud-based solution.

  • Scaling - Scaling prediction services of cloud models usually requires simply cloning your server and paying the service provider more money for additional computing power. With edge computing, you need to purchase and configure additional hardware.

Examples of edge AI

Edge AI is already being used in our everyday lives as well as offering money savings as an extension of industrial IoT applications. One of the most prominent home automation example of edge AI is the smart speaker.

The speaker is constantly listening for a key word or phrase ("Alexa" or "Hey Google"). This process is known as "keyword spotting," and it involves performing inference on incoming sound data with a small ML model trained to recognize only that word or phrase. Latency is important here; the speaker needs to respond to the listener within a few milliseconds. It also saves on bandwidth, as the raw audio does not need to be constantly transmitted over the network.

Once the speaker recognizes the keyword, it "wakes up" and begins streaming audio over the internet to a powerful server where a more complex model can perform intent analysis to determine what the user is requesting. The smart speaker is a perfect combination of edge AI and cloud AI working in tandem to provide a unique user interaction.

Many smart watches also rely on edge AI.

Some can perform keyword spotting directly on the the watch hardware or are capable of streaming that audio to a connected smartphone for analysis. Either way, the processing is performed on an edge device. They also work with smartphones to analyze sleep patterns and track fitness activities.

Finally, a popular example of edge AI is the self-driving vehicle. These cars, trucks, and buses promise to transport people and goods without needing a human driver.

Because vehicles cannot rely on a constant internet connection, much of the data processing from the myriad sensors must be performed on the vehicle itself. This means engineers must find a balance between computing power, size, and ML model complexity.

Market size

The rapid adoption of AI technology and deployment of IoT devices shows how the market is expanding to include edge AI solutions. Note that this is not a shift from cloud-based AI; cloud solutions will continue to grow in addition to edge deployments.

Going further

Edge AI can be seen as an extension of IoT where data analysis and processing is performed on or close to the sensors that captured the data. While edge AI does not offer the same raw compute power as cloud-based applications, it does help limit bandwidth usage, lower latency, reduce energy consumption, avoid reliance on constant network connection, and enhance data privacy.

Quiz

Test your knowledge on edge AI with this quiz:

Better energy efficiency - Most cloud servers require large overhead with operating systems and various abstraction layers. By running inference on edge devices, you can often do away with these layers and overhead.

Limited remote access - Prediction serving from the cloud offers easy access from any device that has internet access. Remotely access edge devices often requires special network configuration, such as running a .

Factories and industrial plants are turning to edge AI to help monitor equipment and measure workflows. For example, the is a single-board computer that acts as an IoT hub and can perform important analysis jobs like of assembly line parts.

The International Data Corporation (IDC) predicts 41.6 billion IoT devices will produce nearly . Additionally, Gartner predicts that algorithms will occur on the same device that captured the raw data in 2025. This figure shows massive growth in edge AI capabilities, up from 10% of on-device processing in 2021. Gartner also predicts that , such as GPUs and neural processing units (NPUs), will be "$137 billion by 2027, growing by a five-year CAGR of 26.5%."

To learn more about edge AI, see our guides on and .

containerized
VPN service
Lexmark Optra
automated optical inspection
80 zettabytes that year
55% of all data analysis by AI and ML
revenue from specialized AI processors
embedded ML
edge ML
edge computing
Click here to watch the video
machine learning (ML)
Machine learning model training
Machine learning model inference
Smart speaker
Smart watch
Lexmark Optra
Self-driving bus