LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Using the data explorer
  • Assisted labeling
  • Wait, how does this work?
  • Examples of different embeddings
  • Questions? Excited?
  1. Edge Impulse Studio
  2. Data acquisition

Data explorer

PreviousUploaderNextData sources

Last updated 6 months ago

The data explorer is a visual tool to explore your dataset, find outliers or mislabeled data, and to help label unlabeled data. The data explorer first tries to extract meaningful features from your data (through signal processing and neural network embeddings) and then uses a dimensionality reduction algorithm to map these features to a 2D space. This gives you a one-look overview of your complete dataset.

The Data explorer tab is available for audio classification, image classification and regression projects only.

Using the data explorer

To access the data explorer head to Data acquisition, click Data explorer, then select a way to generate the data explorer. Depending on you data you'll see three options:

  • Using a pre-trained model - here we use a large neural network trained on a varied dataset to generate the embeddings. This works very well if you don't have any labeled data yet, or want to look at new clusters of data. This option is available for keywords and for images.

  • Using your trained impulse - here we use the neural network block in your impulse to generate the embeddings. This typically creates even better visualizations, but will fail if you have completely new clusters of data as the neural network hasn't learned anything about them. This option is only available if you have a trained impulse.

Then click Generate data explorer to create the data explorer. If you want to make a different choice after creating the data explorer click ⋮ in the top right corner and select Clear data explorer.

Want to see examples of the same dataset visualized in different ways? Scroll down!

Viewing and modifying data

To view an item in your dataset just click on any of the dots (some basic information appears on hover). Information about the sample, and a preview of the data item appears at the bottom of the data explorer. You can click Set label (or l on your keyboard) to set a new label for the data item, or press Delete item (or d on your keyboard) to remove the data item. These changes are queued until you click Save labels (at the top of the data explorer).

Assisted labeling

The data explorer marks unlabeled data in gray (with an 'Unlabeled' label). To label this data you click on any gray dot. To then set a label by clicking the Set label button (or by pressing l on your keyboard) and enter a label. Other unlabeled data in the vicinity of this item will automatically be labeled as well. This way you can quickly label clustered data.

To upload unlabeled data you can either:

  • Select the items in your dataset under Data acquisition, select all relevant items, click Edit labels and set the label to an empty string.

Or, if you want to start from scratch, click the three dots on top of the data explorer, and select Clear all labels.

Wait, how does this work?

The data explorer uses a three-stage process:

  1. It runs your data through an input and a DSP block - like any impulse.

  2. It passes the result of 1) through part of a neural network. This forces the neural network to compress the DSP output even further, but to features that are highly specialized to distinguish the exact type of data in your dataset (called 'embeddings').

  3. The embeddings are passed through t-SNE, a dimensionality reduction algorithm.

  • 33 input features (from the signal processing step)

  • A layer with 20 neurons

  • A layer with 10 neurons

  • A layer with 4 neurons (the number of different classes)

While training the neural network we try to find the mathematical formula that best maps the input to the output. We do this by tweaking each neuron (each neuron is a parameter in our formula). The interesting part is that each layer of the neural network will start acting like a feature extracting step - just like our signal processing step - but highly tuned for your specific data. For example, in the first layer, it'll learn what features are correlated, in the second it derives new features, and in the final layer, it learns how to distinguish between classes of motions.

In the data explorer we now cut off the final layer of the neural network, and thus we get the derived features back - these are called "embeddings". Contrary to features we extract using signal processing we don't really know what these features are - they're specific to your data. In essence, they provide a peek into the brain of the neural network. Thus, if you see data in the data explorer that you can't easily separate, the neural network probably can't either - and that's a great way to spot outliers - or if there's unlabeled data close to a labeled cluster they're probably very similar - great for labeling unknown data!

Examples of different embeddings

Here's an example of using the data explorer to visualize a very complex computer vision dataset (distinguishing between the four cats of one of our infrastructure engineers).

No embeddings (just running t-SNE over the images)

With embeddings from a pre-trained MobileNetV2 model

With embeddings from a custom ML model

For less complex datasets, or lower-dimensional data you'll typically see more separation, even without custom models.

Questions? Excited?

Using the preprocessing blocks in your impulse - here we skip the embeddings, and just use your selected signal processing blocks to create the data explorer. This creates a similar visualization as the but in a 2D space and with extra labeling tools. This is very useful if you don't have any labeled data yet, or if you have new clusters of data that your neural network hasn't learned yet.

Use the and select the 'Leave data unlabeled' option.

When uploading data through the , set the x-no-label header to 1, and the x-label to an empty string.

So what are these embeddings actually? Let's imagine you have the model from the . Here we slice data up in 2-second windows and run a signal processing step to extract features. Then we use a neural network to classify between motions. This network consists of:

If you have any questions about the data explorer or embeddings, we'd be happy to help on the or reach out to your solutions engineer. Excited? to get access to the data explorer, and finally be able to label all that sensor data you've collected!

feature explorer
upload UI
ingestion API
Continuous motion recognition tutorial
forums
Talk to us
Showing a keywords dataset, unlabeled data marked in gray.
Selecting a way to generate the data explorer
Changes are queued until you click 'Save labels'.
Visualizing a complex dataset of cats without embeddings
Visualizing a complex dataset of cats with embeddings from a pre-trained MobileNetV2 model
Visualizing a complex dataset of cats with embeddings from a custom ML model