LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Using the feature explorer
  • Understanding the feature explorer
  • How does this work?
  • Questions?
  • Legacy 3D feature explorer
  1. Edge Impulse Studio
  2. Processing blocks

Feature explorer

PreviousHosting custom DSP blocksNextLearning blocks

Last updated 6 months ago

The feature explorer is a tool used to visualize your dataset’s features. Note that features are the output of your processing block, and not the raw data itself (see , which performs a similar function on your raw data). This visualization helps you identify outliers and how well your classes are grouped and separated. A good separation among your classes usually indicates that simpler machine learning (ML) models can be used with greater accuracy.

Using the feature explorer

To access the feature explorer, go to the Processing page in your project. The name of this page depends on which processing block you used, such as Raw, Flatten, Spectral analysis, and so on.

On the processing page, configure your processing block and click Save parameters. You will be automatically transferred to the Generate features tab. From there, click Generate features and wait while your raw data is transformed into features.

If you are using the Flatten processing block, you will see a 3D representation of up to 3 axes from the features generated in that block. You can select which axes are shown by selecting them from the drop-down menus above the plot.

Other processing blocks (e.g. Spectral analysis) use a process known as "dimensionality reduction" (see the next section for more information). It essentially compresses all the information found in your features (which can be hundreds or thousands of dimensions) into two dimensions. This compression makes it much easier for our human brains to comprehend how the samples relate to each other: how they are clustered and how much distance there is between samples with different labels.

You can click on a dot in the plot to learn more about that particular sample. In both 2D and 3D plots, you can click and drag to move the plot as well as zoom.

Understanding the feature explorer

First, notice that the samples fall into one of four categories: idle, snake, updown, and wave. These categories come directly from your label names for that dataset. Each sample is represented by a dot on the plot, and the color of that dot corresponds to its associated label. Note that if you have time series data, each window corresponds to one sample.

In the ideal case, you would see all the samples in each category in its own grouping separate from other clusters of samples. If that is the case, then you have a very good processing block, and your machine learning model can often be very simple.

Take a look at the grouping with the 1 annotation in the example above. A model (after "training" or "fitting" the model to this dataset) would likely have a very easy time identifying samples in this group. As a result, you can expect a high accuracy for idle samples.

If you look at the 2 group, you can see a lot of overlap among samples that belong to several categories. ML models will often struggle when samples are ambiguous like this. They will have a hard time differentiating among the samples, and you can expect lower accuracy among those groups.

If you see good separation among your class groupings, you can expect good model accuracy, and you may even be able to get away with a simpler model architecture (e.g. fewer nodes per layer, fewer layers). Be cautious of under- and over-fitting when training your model; always check its accuracy with a validation or test dataset!

If your entire dataset looks like the number 2 grouping above (all samples overlap, and it's difficult or impossible to distinguish the groupings), then you might need to take some actions to make your features more separable. Here are some things to try:

  • Collect more data. This will sometimes help flesh out more distinguishable clusters in your features.

  • Try a different processing method. You might need to change how your features are extracted. Spectral analysis not working? Try a spectrogram. Grayscale images create overlapping features? Try using color (RGB) instead to see if the extra information helps separate the groupings.

  • Try different processing parameters. Play with the feature extraction settings in your processing block to see if you can create better groupings.

  • Use a more complex ML model. If you feel you have tried your best to get the features to separate into clusters but there is still a lot of overlap, then you might need to rely on your ML model to perform the separation for you. Often, this means using more complex models (e.g. more layers, more nodes). As before, be aware of under- and over-fitting as you tweak your model's hyperparameters.

How does this work?

With the Flatten block, the points are drawn in a 3D space with the value for each axis coming from one of the features. For example, let’s say you chose average acceleration X, average acceleration Y, and average acceleration Z as your axes, and a sample had the following values for those features:

  • Avg accX = -0.24

  • Avg accY = 0.17

  • Avg accZ = -9.81

A dot would be plotted at (-0.24, 0.17, -9.81) in the 3D viewer. Note that the usage is the same as the 2D viewer: we want to visualize the groupings and separation among classes.

Dimensionality reduction has a number of uses, including data compression, speeding up learning algorithms (as fewer dimensions often means smaller models), and noise reduction. The feature explorer tool in Edge Impulse uses dimensionality reduction to create a data visualization plot to help you understand how your data and features are grouped.

Questions?

Legacy 3D feature explorer

Older versions of Edge Impulse used a 3D viewer with UMAP on non-Flatten blocks. This legacy feature explorer accomplished the same goal of performing dimensionality reduction to provide a visual representation of your extracted features. Because 2D images load faster on web pages than 3D models while retaining much of the same information, we switched to 2D images. However, if feature extraction was performed prior to this switch, some projects may still have 3D feature explorer plots.

Note that if you , you can determine if and how to display a feature explorer plot in your project.

The feature explorer is an incredibly useful tool to help you analyze your dataset, your feature extraction (processing) method, and how well you should expect a machine learning model to classify new samples. We will use our example above, which consists of the spectral analysis features extracted from the .

The is a great AutoML tool in your arsenal to help you design a good impulse. It will automatically try different combinations of processing blocks with different settings along with various ML models to find a good pipeline of feature extraction and ML model.

For other blocks, is the process of transforming data from a high-dimensional space to a low-dimensional space while retaining as much meaningful properties of the original data as possible. Popular algorithms for dimensionality reduction include and .

The feature explorer uses the algorithm to perform dimensionality reduction. The math behind UMAP is quite complex, but it essentially involves constructing a graph in the higher-dimensional space that connects similar data (sample) points to each other. This graph is then projected onto a lower dimensional space (2 dimensions in the case of the feature explorer) to create the final output. does a great job of explaining how UMAP works in more detail.

If you have any questions about the feature explorer, we'd be happy to help on the , or reach out to your solutions engineer.

create your own custom processing block
continuous gestures dataset to help you get started
EON Tuner
dimensionality reduction
PCA
tSNE
Uniform Manifold Approximation and Projection (UMAP)
This blog post
forums
here for the data explorer
Example of the feature explorer showing a dataset features
Example of direct features displayed in a 3D plot
Example of the feature explorer showing a dataset features
Example of the feature explorer showing a dataset features
Example of the feature explorer showing a dataset features