LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Protocol
  • Example (Arduino)
  • Example (Mbed OS)
  • Example (Zephyr)
  • Sensor fusion
  • Classifying data
  • Troubleshooting
  1. Tools
  2. Edge Impulse CLI

Data forwarder

PreviousUploaderNextImpulse runner

Last updated 6 months ago

The data forwarder is used to easily relay data from any device to Edge Impulse over serial. Devices write sensor values over a serial connection, and the data forwarder collects the data, signs the data and sends the data to the ingestion service. The data forwarder is useful to quickly enable data collection from a wide variety of development boards without having to port the full and , but only supports collecting data at relatively low frequencies.

To use the data forwarder, load an application (examples for , and below) on your development board, and run:

$ edge-impulse-data-forwarder

The data forwarder will ask you for the server you want to connect to, prompt you to log in, and then configure the device.

This is an example of the output of the forwarder:

Edge Impulse data forwarder v1.5.0
? What is your user name or e-mail address (edgeimpulse.com)? jan@edgeimpulse.com
? What is your password? [hidden]
Endpoints:
    Websocket: wss://remote-mgmt.edgeimpulse.com
    API:       https://studio.edgeimpulse.com
    Ingestion: https://ingestion.edgeimpulse.com

[SER] Connecting to /dev/tty.usbmodem401203
[SER] Serial is connected
[WS ] Connecting to wss://remote-mgmt.edgeimpulse.com
[WS ] Connected to wss://remote-mgmt.edgeimpulse.com
? To which project do you want to add this device? accelerometer-demo-1
? 3 sensor axes detected. What do you want to call them? Separate the names with ',': accX, accY, accZ
? What name do you want to give this device? Jan's DISCO-L475VG
[WS ] Authenticated

Note: Your credentials are never stored. When you log in these are exchanged for a token. This token is used to further authenticate requests.

Clearing configuration

To clear the configuration, run:

$ edge-impulse-data-forwarder --clean

Overriding the frequency

To override the frequency, use:

$ edge-impulse-data-forwarder --frequency 100

Overriding the baud rate

To set a different baud rate, use:

$ edge-impulse-data-forwarder --baud-rate 460800

Protocol

The protocol is very simple. The device should send data on baud rate 115,200 with one line per reading, and individual sensor data should be split with either a , or a TAB. For example, this is data from a 3-axis accelerometer:

-0.12,-6.20,7.90
-0.13,-6.19,7.91
-0.14,-6.20,7.92
-0.13,-6.20,7.90
-0.14,-6.20,7.91

The data forwarder will automatically determine the sampling rate and the number of sensors based on the output. If you load a new application where the sampling frequency or the number of axes changes, the data forwarder will automatically be reconfigured.

Example (Arduino)

This is an example of a sketch that reads data from an accelerometer (tested on the Arduino Nano 33 BLE):

#include <Arduino_LSM9DS1.h>

#define CONVERT_G_TO_MS2    9.80665f
#define FREQUENCY_HZ        50
#define INTERVAL_MS         (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;

void setup() {
    Serial.begin(115200);
    Serial.println("Started");

    if (!IMU.begin()) {
        Serial.println("Failed to initialize IMU!");
        while (1);
    }
}

void loop() {
    float x, y, z;

    if (millis() > last_interval_ms + INTERVAL_MS) {
        last_interval_ms = millis();

        IMU.readAcceleration(x, y, z);

        Serial.print(x * CONVERT_G_TO_MS2);
        Serial.print('\t');
        Serial.print(y * CONVERT_G_TO_MS2);
        Serial.print('\t');
        Serial.println(z * CONVERT_G_TO_MS2);
    }
}

Example (Mbed OS)

This is an example of an Mbed OS application that reads data from an accelerometer (tested on the ST IoT Discovery Kit):

#include "mbed.h"
#include "stm32l475e_iot01_accelero.h"

static int64_t sampling_freq = 104; // in Hz.
static int64_t time_between_samples_us = (1000000 / (sampling_freq - 1));

// set baud rate of serial port to 115200
static BufferedSerial serial_port(USBTX, USBRX, 115200);
FileHandle *mbed::mbed_override_console(int fd) {
    return &serial_port;
}

int main()
{
    int16_t pDataXYZ[3] = {0};
    Timer t;
    t.start();

    BSP_ACCELERO_Init();

    while(1) {
        int64_t next_tick = t.read_us() + time_between_samples_us;

        BSP_ACCELERO_AccGetXYZ(pDataXYZ);
        pc.printf("%d\t%d\t%d\n", pDataXYZ[0], pDataXYZ[1], pDataXYZ[2]);

        while (t.read_us() < next_tick) {
            /* busy loop */
        }
    }
}

Example (Zephyr)

#include <zephyr.h>
#include <sys/printk.h>
#include <drivers/sensor.h>
#include <stdio.h>
#include <stdlib.h>

static int64_t sampling_freq = 104; // in Hz.
static int64_t time_between_samples_us = (1000000 / (sampling_freq - 1));

int main() {
    // output immediately without buffering
    setvbuf(stdout, NULL, _IONBF, 0);

    // get driver for the accelerometer
    const struct device *iis2dlpc = device_get_binding(DT_LABEL(DT_INST(0, st_iis2dlpc)));
    if (iis2dlpc == NULL) {
        printf("Could not get IIS2DLPC device\n");
        return 1;
    }

    struct sensor_value accel[3];

    while (1) {
        // start a timer that expires when we need to grab the next value
        struct k_timer next_val_timer;
        k_timer_init(&next_val_timer, NULL, NULL);
        k_timer_start(&next_val_timer, K_USEC(time_between_samples_us), K_NO_WAIT);

        // read data from the sensor
        if (sensor_sample_fetch(iis2dlpc) < 0) {
            printf("IIS2DLPC Sensor sample update error\n");
            return 1;
        }

        sensor_channel_get(iis2dlpc, SENSOR_CHAN_ACCEL_XYZ, accel);

        // print over stdout
        printf("%.3f\t%.3f\t%.3f\r\n",
            sensor_value_to_double(&accel[0]),
            sensor_value_to_double(&accel[1]),
            sensor_value_to_double(&accel[2]));

        // busy loop until next value should be grabbed
        while (k_timer_status_get(&next_val_timer) <= 0);
    }
}

Sensor fusion

You may also have sensors with different sampling frequencies, such as:

  • accelerometer: 3 axis sampled at 100Hz

  • RMS current sensor: 1 axis sampled at 5Hz

In this case, you should first upscale to the highest frequency to keep the finest granularity: upscale RMS sensor to 100 Hz by duplicating each value 20 times (100/5). You could also smooth values over between samples.

Classifying data

Classifying data (Arduino)

// Include the Arduino library here (something like your_project_inference.h) 
// In the Arduino IDE see **File > Examples > Your project name - Edge Impulse > Static buffer** to get the exact name
#include <your_project_inference.h>
#include <Arduino_LSM9DS1.h>

#define CONVERT_G_TO_MS2    9.80665f
#define FREQUENCY_HZ        EI_CLASSIFIER_FREQUENCY
#define INTERVAL_MS         (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;
// to classify 1 frame of data you need EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE values
float features[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];
// keep track of where we are in the feature array
size_t feature_ix = 0;

void setup() {
    Serial.begin(115200);
    Serial.println("Started");

    if (!IMU.begin()) {
        Serial.println("Failed to initialize IMU!");
        while (1);
    }
}

void loop() {
    float x, y, z;

    if (millis() > last_interval_ms + INTERVAL_MS) {
        last_interval_ms = millis();

        // read sensor data in exactly the same way as in the Data Forwarder example
        IMU.readAcceleration(x, y, z);

        // fill the features buffer
        features[feature_ix++] = x * CONVERT_G_TO_MS2;
        features[feature_ix++] = y * CONVERT_G_TO_MS2;
        features[feature_ix++] = z * CONVERT_G_TO_MS2;

        // features buffer full? then classify!
        if (feature_ix == EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE) {
            ei_impulse_result_t result;

            // create signal from features frame
            signal_t signal;
            numpy::signal_from_buffer(features, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);

            // run classifier
            EI_IMPULSE_ERROR res = run_classifier(&signal, &result, false);
            ei_printf("run_classifier returned: %d\n", res);
            if (res != 0) return;

            // print predictions
            ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
                result.timing.dsp, result.timing.classification, result.timing.anomaly);

            // print the predictions
            for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
                ei_printf("%s:\t%.5f\n", result.classification[ix].label, result.classification[ix].value);
            }
        #if EI_CLASSIFIER_HAS_ANOMALY == 1
            ei_printf("anomaly:\t%.3f\n", result.anomaly);
        #endif

            // reset features frame
            feature_ix = 0;
        }
    }
}

void ei_printf(const char *format, ...) {
    static char print_buf[1024] = { 0 };

    va_list args;
    va_start(args, format);
    int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
    va_end(args);

    if (r > 0) {
        Serial.write(print_buf);
    }
}

Classifying data (Mbed OS)

#include "mbed.h"
#include "stm32l475e_iot01_accelero.h"
#include "ei_run_classifier.h"

static int64_t sampling_freq = EI_CLASSIFIER_FREQUENCY; // in Hz.
static int64_t time_between_samples_us = (1000000 / (sampling_freq - 1));

// to classify 1 frame of data you need EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE values
static float features[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];

// set baud rate of serial port to 115200
static BufferedSerial serial_port(USBTX, USBRX, 115200);
FileHandle *mbed::mbed_override_console(int fd) {
    return &serial_port;
}

int main()
{
    int16_t pDataXYZ[3] = {0};
    Timer t;
    t.start();

    BSP_ACCELERO_Init();

    while (1) {
        // fill the features array
        for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME) {
            int64_t next_tick = t.read_us() + time_between_samples_us;
            BSP_ACCELERO_AccGetXYZ(pDataXYZ);

            // copy accelerometer data into the features array
            features[ix + 0] = (float)pDataXYZ[0];
            features[ix + 1] = (float)pDataXYZ[0];
            features[ix + 2] = (float)pDataXYZ[0];

            while (t.read_us() < next_tick) {
                /* busy loop */
            }
        }

        // frame full? then classify
        ei_impulse_result_t result = { 0 };

        // create signal from features frame
        signal_t signal;
        numpy::signal_from_buffer(features, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);

        // run classifier
        EI_IMPULSE_ERROR res = run_classifier(&signal, &result, false);
        ei_printf("run_classifier returned: %d\n", res);
        if (res != 0) return 1;

        // print predictions
        ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);

        // print the predictions
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            ei_printf("%s:\t%.5f\n", result.classification[ix].label, result.classification[ix].value);
        }
    #if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("anomaly:\t%.3f\n", result.anomaly);
    #endif
    }
}

Classifying (Zephyr)

Before adding the classifier in Zephyr:

  1. Copy the extracted C++ library into your Zephyr project, and add the following to your CMakeLists.txt file (where ./model is where you extracted the library).

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_subdirectory(./model)
  1. Enable C++ and set the stack size of the main thread to at least 4K, by adding the following to prj.conf:

CONFIG_CPLUSPLUS=y
CONFIG_LIB_CPLUSPLUS=y
CONFIG_NEWLIB_LIBC=y
CONFIG_NEWLIB_LIBC_FLOAT_PRINTF=y

CONFIG_MAIN_STACK_SIZE=8192
  1. If you're on a Cortex-M target, enable hardware acceleration by adding the following defines to your CMakeLists.txt file:

add_definitions(-DEIDSP_USE_CMSIS_DSP=1
                -DEIDSP_LOAD_CMSIS_DSP_SOURCES=1
                -DEI_CLASSIFIER_TFLITE_ENABLE_CMSIS_NN=1
                -DARM_MATH_LOOPUNROLL)

Then, run the following application:

#include <zephyr.h>
#include <sys/printk.h>
#include <drivers/sensor.h>
#include <stdio.h>
#include <stdlib.h>
#include "ei_run_classifier.h"

static int64_t sampling_freq = EI_CLASSIFIER_FREQUENCY; // in Hz.
static int64_t time_between_samples_us = (1000000 / (sampling_freq - 1));

// to classify 1 frame of data you need EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE values
static float features[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];

int main() {
    // output immediately without buffering
    setvbuf(stdout, NULL, _IONBF, 0);

    // get driver for the accelerometer
    const struct device *iis2dlpc = device_get_binding(DT_LABEL(DT_INST(0, st_iis2dlpc)));
    if (iis2dlpc == NULL) {
        printf("Could not get IIS2DLPC device\n");
        return 1;
    }

    struct sensor_value accel[3];

    while (1) {
        for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME) {
            // start a timer that expires when we need to grab the next value
            struct k_timer next_val_timer;
            k_timer_init(&next_val_timer, NULL, NULL);
            k_timer_start(&next_val_timer, K_USEC(time_between_samples_us), K_NO_WAIT);

            // read data from the sensor
            if (sensor_sample_fetch(iis2dlpc) < 0) {
                printf("IIS2DLPC Sensor sample update error\n");
                return 1;
            }

            sensor_channel_get(iis2dlpc, SENSOR_CHAN_ACCEL_XYZ, accel);

            // fill the features array
            features[ix + 0] = sensor_value_to_double(&accel[0]);
            features[ix + 1] = sensor_value_to_double(&accel[1]);
            features[ix + 2] = sensor_value_to_double(&accel[2]);

            // busy loop until next value should be grabbed
            while (k_timer_status_get(&next_val_timer) <= 0);
        }

        // frame full? then classify
        ei_impulse_result_t result = { 0 };

        // create signal from features frame
        signal_t signal;
        numpy::signal_from_buffer(features, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);

        // run classifier
        EI_IMPULSE_ERROR res = run_classifier(&signal, &result, false);
        printf("run_classifier returned: %d\n", res);
        if (res != 0) return 1;

        // print predictions
        printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);

        // print the predictions
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            printf("%s:\t%.5f\n", result.classification[ix].label, result.classification[ix].value);
        }
    #if EI_CLASSIFIER_HAS_ANOMALY == 1
        printf("anomaly:\t%.3f\n", result.anomaly);
    #endif
    }
}

Troubleshooting

"The execution of scripts is disabled on this system" (Windows)

If you are running the data forwarder on a Windows system, you need to update PowerShell's execution policy to allow running scripts:

Set-ExecutionPolicy unrestricted

There's also a complete example that samples data from both the accelerometer and the gyroscope here: .

This is an example of a Zephyr application that reads data from an accelerometer (tested on the Nordic Semiconductor nRF52840 DK with ST X-NUCLEO-IKS02A1 shield), based on the example:

There's also a complete example that samples data from the accelerometer here: .

Using the Data Forwarder, you can relay data from multiple sensors. You can check for a complete example using NO2, CO, C2H5OH and VOC sensors on a WIO Terminal.

To classify data you first deploy your project by following the steps in - which contains examples for a wide variety of platforms. Then, declare a features array, fill it with sensor data, and run the classifier. Here are examples for Arduino, Mbed and Zephyr - but the same applies to any other platform.

Note: These examples collect a full frame of data, then classify this data. This might not be what you want (as classification blocks the collection thread). See for an example on how to implement continuous classification.

edgeimpulse/example-dataforwarder-mbed
sensorhub
edgeimpulse/example-dataforwarder-zephyr
Benjamin Cabe's artificial nose
Running your impulse locally
Continuous audio sampling
remote management protocol
serial protocol
Arduino
Mbed OS
Zephyr