LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Installation guide
  • Configuration
  • Collecting data
  • Classifying data
  1. Tools
  2. Edge Impulse for Linux

Linux Node.js SDK

PreviousEdge Impulse for LinuxNextLinux Go SDK

Last updated 6 months ago

This library lets you run machine learning models and collect sensor data on machines using Node.js. The SDK is open source and hosted on GitHub: .

See our to learn more about the .eim file format.

Installation guide

Add the library to your application via:

$ npm install edge-impulse-linux

Configuration

To setup the parameters of the Edge Impulse CLI, have a look at the helper:

edge-impulse-linux --help     
Usage: edge-impulse-linux [options]

Edge Impulse Linux client 1.4.3

Options:
  -V, --version         output the version number
  --api-key <key>       API key to authenticate with Edge Impulse (overrides current credentials)
  --hmac-key <key>      HMAC key to sign new data with (overrides current credentials)
  --disable-camera      Don't prompt for camera
  --disable-microphone  Don't prompt for microphone
  --width <px>          Desired width of the camera stream
  --height <px>         Desired height of the camera stream
  --clean               Clear credentials
  --silent              Run in silent mode, don't prompt for credentials
  --dev                 List development servers, alternatively you can use the EI_HOST environmental variable to specify the Edge Impulse instance.
  --verbose             Enable debug logs
  -h, --help            output usage information

Collecting data

Before you can classify data you'll first need to collect it. If you want to collect data from the camera or microphone on your system you can use the Edge Impulse CLI, and if you want to collect data from different sensors (like accelerometers or proprietary control systems) you can do so in a few lines of code.

Collecting data from the camera or microphone

Collecting data from other sensors

Classifying data

To classify data (whether this is from the camera, the microphone, or a custom sensor) you'll need a model file. This model file contains all signal processing code, classical ML algorithms and neural networks - and typically contains hardware optimizations to run as fast as possible. To grab a model file:

  1. Train your model in Edge Impulse.

  2. Download the model file via:

    $ edge-impulse-linux-runner --download modelfile.eim

    This downloads the file into modelfile.eim. (Want to switch projects? Add --clean)

Then you can start classifying realtime sensor data. We have examples for:

edge-impulse-linux-runner --help
Usage: edge-impulse-linux-runner [options]

Edge Impulse Linux runner 1.3.12

Options:
  -V, --version            output the version number
  --model-file <file>      Specify model file (either path to .eim, or the socket on which
                           the model is running), if not provided the model will be fetched
                           from Edge Impulse
  --api-key <key>          API key to authenticate with Edge Impulse (overrides current
                           credentials)
  --download <file>        Just download the model and store it on the file system
  --force-target <target>  Do not auto detect the target system, but set it by hand
  --clean                  Clear credentials
  --silent                 Run in silent mode, don't prompt for credentials
  --quantized              Download int8 quantized neural networks, rather than the float32
                           neural networks. These might run faster on some architectures,
                           but have reduced accuracy.
  --enable-camera          Always enable the camera. This flag needs to be used to get data
                           from the microphone on some USB webcams.
  --dev                    List development servers, alternatively you can use the EI_HOST
                           environmental variable to specify the Edge Impulse instance.
  --verbose                Enable debug logs
  -h, --help               output usage information

To collect data from the camera or microphone, follow the for your development board.

To collect data from other sensors you'll need to write some code where you instantiate a DataForwarder object, write data samples, and finally call finalize() which uploads the data to Edge Impulse. .

.

- grabs data from the microphone and classifies it in realtime.

- grabs data from a webcam and classifies it in realtime.

- classifies custom sensor data.

Linux
edgeimpulse/edge-impulse-linux-cli
Linux EIM executable guide
getting started guide
Here's an end-to-end example
Install the Edge Impulse for Linux CLI
Audio
Camera
Custom data