LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Feature output format
  • Audio MFE parameters
  • How does the MFE block work?
  1. Edge Impulse Studio
  2. Processing blocks

Audio MFE

PreviousSpectrogramNextAudio MFCC

Last updated 6 months ago

Similarly to the , the Audio MFE processing block extracts time and frequency features from a signal. However it uses a non-linear scale in the frequency domain, called Mel-scale. It performs well on audio data, mostly for non-voice recognition use cases when sounds to be classified can be distinguished by human ear.

GitHub repository containing all DSP block code: .

Feature output format

The "Processed features" array has the following format:

  • Column major, from low frequency to high.

  • Number of rows will be equal to the filter number

  • Each column represents a single frame

Consider a toy example where the the signal is a pure tone, and Filter number is set to 6:

0.1016, 0.0391, 0.0000, 0.0000, 0.0000, 0.0000, 0.0820, 0.0547, 0.0117, 0.0000, 0.0000, ...

Output would begin as shown. The tone is a low frequency, so it falls into the first two Mel bins. The higher frequency bins are 0. The pattern repeats at the 7th element, which is the 1st row of the 2nd column.

Audio MFE parameters

Compatible with the DSP Autotuner

Picking the right parameters for DSP algorithms can be difficult. It often requires a lot of experience and experimenting. The autotuning function makes this process easier by looking at the entire dataset and recommending a set of parameters that is tuned for your dataset.

Mel-filterbank energy features

  • Frame length: The length of each frame in seconds

  • Frame stride: The step between successive frame in seconds

  • Filter number: The number of triangular filters applied to the spectrogram

  • FFT length: The FFT size

  • Low frequency: Lowest band edge of Mel-scale filterbanks

  • High frequency: Highest band edge of Mel-scale filterbanks

Normalization

  • Noise floor (dB): signal lower than this level will be dropped

How does the MFE block work?

The graph titled "FFT Bin Weighting" shows how the FFT bins are scaled and summed into the output columns for your chosen parameters.

The last step clips the MFE output for noise reduction. Any sample below Noise floor is set to zero instead.

The features' extractions is similar to the (Frame length, Frame stride, and FFT length parameters are the same) but it adds 2 extra steps.

After computing the spectrogram, triangular filters are applied on a Mel-scale to extract frequency bands. They are configured with parameters Filter number, Low frequency and High frequency to select the frequency band and the number of frequency features to be extracted. The Mel-scale is . The idea is to extract more features (more filter banks) in the lower frequencies, and less in the high frequencies, thus it performs well on sounds that can be distinguished by human ear.

Spectrogram
a perceptual scale of pitches judged by listeners to be equal in distance from one another
Spectrogram block
edgeimpulse/processing-blocks
MFE parameters overview