LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Accessing the configuration panel
  • Configure your target device and application budget
  • Top-level Navigation
  • Summary
  1. Edge Impulse Studio
  2. Project dashboard

Select AI Hardware

PreviousProject dashboardNextDevices

Last updated 6 months ago

The target configuration tool allows you to define your Target device and Application budget according to your project's requirements. This flow is designed to help you optimize your impulse, processing, learn block, or imported model for your specific target hardware, ensuring that your impulse will run efficiently on your device or custom architecture.

The configuration form can be accessed from the top-level navigation. The form allows you to select from a range of processor types, architectures, and clock rates. For a custom device, you could for example select Low-end MCU and specify the clock rate, RAM, ROM, and maximum allowed latency for your application.

Accessing the configuration panel

By default, the form shows 'Cortex-M4F 80MHz' as the target device. You can change this by clicking on Change Target device. You can select from a range of processor types, architectures, and clock rates. For a custom device, you could for example select Low-end MCU and specify the clock rate, RAM, ROM, and maximum allowed latency for your application.

Configure your target device and application budget

Lets walk you through some of the current options for configuring your device and application budget:

  • Target Device: Select the type of target device you are configuring from options like "Custom" or specific development boards.

  • Processor Type Selection: Selecting a processor type dynamically adjusts available architecture options and fields to suit your hardware:

    • For Low-end MCU: This option allows you to specify clock rate, RAM, and ROM, suitable for 'Cortex-M' architectures.

    • For AI Accelerators: Selecting this disables the clock rate field, reflecting the unique requirements of AI accelerator devices.

  • Custom Device Configuration: Choosing to configure a custom device opens fields to precisely define its capabilities, ensuring your project setup is accurately tailored to your hardware.

Special options for Custom Targets:

The form allows you to select from a range of processor types, architectures, and clock rates. For a custom device, you could for example select Low-end MCU and specify the clock rate, RAM, ROM, and maximum allowed latency for your application.

  • Custom: Select this for custom hardware specifications or devices not listed in Edge Impulse, allowing for a customized hardware profile. Selection Options

Processor Type & Architecture

Choose from a variety of processor types and architectures. Your selection determines which options and fields are available to accurately configure your device. Estimations for GPU, AI accelerator, or NPU devices are not computed using clock speed, or but rather the device's unique capabilities.

  • Processor Type: Selections range from various processor types. Choosing GPU, AI accelerator' or NPU deactivates the clock speed option, as it's irrelevant for device estimation.

  • Processor Architecture (Optional): Specify your device's architecture to refine its configuration (e.g., Cortex-M0+, Cortex-M4F, Cortex-M7).

  • Clock Rate (Optional): Set the clock rate for relevant processor types to estimate operational capabilities accurately. The units shown will be indicated by the | MHz | GHz as relevant to the scale of processor. As previously stated the clock rate field is disabled for GPU, AI accelerator, or NPU devices.

  • Accelerator: If the device supports hardware acceleration, select from available options such as Arm Cortex-U55, NVIDIA Jetson Nano, and others.

  • Device ID (Optional): Provide a unique identifier for your custom device model or chip architecture variant for easy recognition and setup.

  • Custom Device Name (Optional): Provide a unique name for your custom device to easily identify it in your project.

Application Budget - RAM, ROM, and Latency

The application budget section allows you to specify the maximum allowed latency, RAM, and ROM for your application. These values are used to estimate the performance of your model on your target device.

  • RAM: Specify the amount of RAM available on your device in kilobytes (kB).

  • ROM: Specify the amount of ROM available on your device in kilobytes (kB).

  • Latency: Specify the maximum allowed latency for your application in milliseconds (ms).

  • Save Target: Save your custom device and application budget configuration to apply it to your project.

After customizing your target device and application budget, click Save target. With the target device set, navigate to the EON Tuner to see the configuration in action. The target device can be seen at the top level of navigation on all screens within your project. Your custom device name (e.g., 'my first mcu') and the specified parameters (100 ms latency, 256 kB RAM, 1024 kB ROM) are visible. The target device configuration is also taken into account during the performance estimation for deployment.

Top-level Navigation

Once saved the target device can be seen at the top level of navigation on all screens within your project. Your custom device name (e.g., 'my first mcu') and the specified parameters (100 ms latency, 256 kB RAM, 1024 kB ROM) are visible. The target device configuration is also taken into account during the performance estimation for deployment.

Summary

The target-driven flow in Edge Impulse Studio allows you to configure your target device and application budget according to your project's requirements. This flow is designed to help you optimize your impulse for your specific target hardware, ensuring that your impulse will run efficiently on your device.

We hope this feature is helpful, and intuitive. If you have any questions or suggestions, feel free to reach out to us at forum.edgeimpulse.com. We're always happy to hear from you!

Target-driven Default Settings
Custom Targets
Save
Navigating to EON Tuner with Updated Target Device
Top-level Navigation