LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Introduction
  • Prerequisites
  • Steps
  • Conclusion
  1. Tutorials
  2. Lifecycle Management

CI/CD with GitHub Actions

PreviousLifecycle ManagementNextOTA Model Updates

Last updated 6 months ago

Introduction

In today’s tech world, CI/CD (Continuous Integration/Continuous Deployment) is crucial for delivering fully tested and up-to-date software or firmware to your customers. This tutorial will guide you through integrating Edge Impulse Studio with , enabling seamless build and deployment of your Edge Impulse model into your workflow.

Edge Impulse provides a comprehensive for seamless integration with third-party services, allowing for the automation of tasks within Edge Impulse Studio. The GitHub Action we created simplifies the process of building and deploying models into your workflow.

This example was adapted from the .

Prerequisites

  • GitHub repository for your firmware source code.

  • Edge Impulse project created in the Studio.

Steps

  1. Obtain Project ID and API Key

  • Navigate to your Edge Impulse project in the Studio.

  • Select "Dashboard" from the left pane, then click on "Keys" at the top.

  • Note down the Project ID and Project API Key.

  1. Add GitHub Action to Your Workflow

  • Open your workflow YAML file in your GitHub repository.

  • Add the following code to your workflow YAML file:

    - name: Build and deploy Edge Impulse Model
     uses: edgeimpulse/build-deploy@v1
     id: build-deploy
     with:
      project_id: ${{ secrets.PROJECT_ID }}
      api_key: ${{ secrets.API_KEY }}

    Replace ${{ secrets.PROJECT_ID }} and ${{ secrets.API_KEY }} with your actual Edge Impulse Project ID and API Key.

  1. Extract the Model and SDK

  • After the build and deployment action, you may want to extract the model and SDK.

  • Use the following example code in your workflow:

    - name: Extract the Model and SDK
     run: |
      mkdir temp
      unzip -q "${{ steps.build-deploy.outputs.deployment_file_name }}" -d temp
      mv temp/edge-impulse-sdk/ .
      mv temp/model-parameters/ .
      mv temp/tflite-model/ .
      rm -rf "${{ steps.build-deploy.outputs.deployment_file_name }}"
      rm -rf temp/
  1. Customize Deployment Type (Optional)

  • Here's an example of downloading the Arduino library:

    - name: Build and deploy Edge Impulse Model
     uses: edgeimpulse/build-deploy@v1
     id: build-deploy
     with:
      project_id: ${{ secrets.PROJECT_ID }}
      api_key: ${{ secrets.API_KEY }}
      deployment_type: "arduino"
  1. Real-world Use Case

  • Utilize the GitHub Action for CI/CD purposes.

  • For example, testing public examples to prevent breaking changes.

```yaml
- name: Build and deploy EI Model
 uses: ./.github/actions/build-deploy
 id: build-deploy
 with:
  project_id: ${{ secrets.PROJECT_ID }}
  api_key: ${{ secrets.API_KEY }}
- name: Extract the EI Model
 run: |
  mkdir ei-model
  unzip -q "${{ steps.build-deploy.outputs.deployment_file_name }}" -d ei-model
  mv ei-model/edge-impulse-sdk/ .
  mv ei-model/model-parameters/ .
  mv ei-model/tflite-model/ .
  rm -rf "${{ steps.build-deploy.outputs.deployment_file_name }}"
  rm -rf ei-model/
- name: Build test app for nRF52840DK
 run: |
  docker run --rm -v $PWD:/app zephyr-ncs-1.9.1:latest west build -b nrf52840dk_nrf52840
```

6. Notification for Workflow Errors

  • Thanks to GitHub Actions notification, the person responsible for the commit that created an error in workflow will be notified.

Conclusion

Integrating Edge Impulse Studio with GitHub workflows enhances your CI/CD pipeline by automating the build and deployment process of your Edge Impulse models. This simplifies the development and testing of firmware, ensuring its accuracy and reliability. GitHub repository for your firmware source code. Edge Impulse project created in the Studio.

By default, the GitHub Action downloads the C++ library. You can customize the deployment type using the deployment_type input parameter. We can use a simple Python script

Here's an example of using the Action with Nordic Semiconductor/Zephyr inference :

example
GitHub workflows
REST API
available here
Edge Impulse Blog - Integrate Your GitHub Workflow with Edge Impulse Studio By Mateusz Majchrzycki
here
GitHub Actions - IDE