LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • How to use the CSV Wizard
  • Step 1: Upload a file
  • Step 2: Analyze your data
  • Step 3: About your data
  • Step 4: CSV Wizard: About your values
  • Step 5: Split up your samples
  • Multi-label
  • What happens next?
  1. Edge Impulse Studio
  2. Data acquisition

CSV Wizard (Time-series)

PreviousAI labelingNextMulti-label (Time-series)

Last updated 6 months ago

The CSV Wizard allows users with larger or more complex datasets to easily upload their data without having to worry about converting it to the .

To access the CSV Wizard, navigate to the Data Acquisition tab of your Edge Impulse project and click on the CSV Wizard button:

How to use the CSV Wizard

We can take a look at some sample data from a Heart Rate Monitor (Polar H10). We can see there is a lot of extra information we don’t need:

Step 1: Upload a file

Choose a CSV file to upload and select "Upload File". The file will be automatically analyzed and the results will be displayed in the next step. Here I have selected an export from a HR monitor. You can try it out yourself by downloading this file:

Step 2: Analyze your data

When processing your data, we will check for the following:

  • Does this data contain a label?

  • Is this data time series data?

  • Is this data raw sensor data or processed features?

  • Is this data separated by a standard delimiter?

  • Is this data separated by a non-standard delimiter?

If there are settings that need to be adjusted, (for the start of your data you can select skip first x lines or no header, and adjust the delimiter) you can do so before selecting looks good, next"**.

Step 3: About your data

Here you can select the timestamp column, or row and the frequency of the timestamps. If you do not have a timestamp column, you can select No timestamp column and add a timestamp later. If you do have a timestamp column you can select: the timestamp format, e.g. full timestamp, and the frequency of the timestamps, overriding is also possible via Override timestamp difference. For example Selecting 20000 will give you the detected frequency of: 0.05 Hz.

Step 4: CSV Wizard: About your values

Here you can select the label column, or row. If you do not have a label column, you can select No (no worries, you can provide this when you upload data) and add a label later. If you do have a label column you can select: Yes it's "Value" The CSV Wizard allows users with larger or more complex datasets to easily upload their data without having to worry about converting it to CBOR format. You can also select the columns that contain your values.

Step 5: Split up your samples

How long do you want your samples to be?

In this section, you can set a length limit to your sample size. For example, if your CSV contains 30 seconds of data, when setting a limit of 3000ms, it will create 10 distinct data samples of 3 seconds.

How should we deal with multiple labels in a sample?

Congratulations! 🚀 You have successfully created a CSV transform with the CSV Wizard. You can now save this transform and use it to process your data.

Multi-label

How should we deal with multiple labels in a sample?

◉ The sample should have multiple labels

◯ Use the last value of "label as the label for each sample (see the table on the right)

What happens next?

Any CSV files that you upload into your project - whether it's through the uploader, the CLI, the API or through data sources - will now be processed according to the rules you set up with the CSV Wizard!

See below.

If your CSV contains multiple labels, like in this , in the final step, select:

Read on See the dedicated documentation page.

coffee machine stages dataset
multi-label
Multi-label
Data Acquisition format
7KB
polar_hr.csv
Edge Impulse Studio CSV Wizard
Raw CSV sample.
Multi-label workflow
CSV transform saved