LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • Edge AI lifecycle
  • Edge Impulse Studio
  • Enterprise features
  • Getting started
  • Quiz
  1. Concepts
  2. Edge AI

What is Edge Impulse?

PreviousWhat is edge MLOps?NextCase study: Izoelektro smart grid monitoring

Last updated 6 months ago

Edge Impulse is the leading edge AI platform for collecting data, training models, and deploying them to your edge computing devices. It provides an end-to-end framework that easily plugs into your edge MLOps workflow.

Previously, we looked at and how it can be used to standardized your edge AI lifecycle. This time, we introduce Edge Impulse as a platform for building edge AI solutions and edge MLOps pipelines.

Edge AI lifecycle

Edge Impulse helps with every step along the edge AI lifecycle, from collecting data, extracting features, designing machine learning (ML) models, training and testing those models, and deploying the models to end devices.

Edge Impulse easily plugs into other machine learning frameworks so that you can scale and customize your model or pipeline as needed.

Edge Impulse Studio

Edge Impulse Studio is a web-based tool with a graphical interface to help you collect data, build an impulse, and deploy it to an end device.

Data can be stored, sorted, and labeled using the data acquisition tool.

From there, an impulse can be created that includes one or more feature extraction methods along with a machine learning model.

Once trained, the models can be tested using a holdout set or by connecting your device to ingest live data.

Enterprise features

Edge Impulse has a number of enterprise features to help you build full edge ML pipelines and scale your deployments. First, you have access to faster performance and more training time to create larger and more complex models.

Getting started

Even though Edge Impulse works well for beginners and students, it is highly extensible for experts and engineers alike. The following guides can help you get started depending on your background:

Quiz

Test your knowledge on Edge Impulse with the following quiz:

Note that while we have some to help you get started, we offer a variety of ways to . In many cases, data collection requires customized software (and sometimes custom hardware). This data can easily be stored in a third-party location, such as an . From there, data can be and .

Deployment can also be tricky, as edge devices can vary in their processing power, operating system (or lack thereof), and supported languages. As a result, Edge Impulse offers a number of that you can build your application around. In most cases, these deployed options come as open-source libraries that make interacting with the models easy.

Finally, all aspects of Edge Impulse can be scripted using a . This allows you complete the by monitoring models and triggering new data collection, model training, and redeployment as needed.

A number of off-the-shelf feature extraction methods can be used and modified to suit the needs of your particular project. You can also design your own feature extraction method using a .

Next, you can train a machine learning model (including classification, regression, or anomaly detection) using a learning block. A number of pre-made learning blocks can be used, but you can also create your own or use the to modify the ML training code.

Finally, your full impulse can be , including a C++ library, Linux process (controlled via Python, Node.js, Go, C++, and others), Docker container, WebAssembly executable, or a pre-built firmware for supported hardware.

Edge Impulse includes advanced features like the autoML tool known as to try various impulse configurations to determine the best combination of blocks.

As mentioned previously, you can script all aspects of Studio using the , which allows you to construct full MLOps pipelines.

You also gain access to an to easily monitor and maintain projects along with , which allow you to configure and run transformation blocks in sequence to extract, transform, and load (ETL) data from a variety of sources.

You can look through this to see how data is captured, stored, loaded, and transformed from production servers using Edge Impulse tools.

Try our or FREE today.

One of the fastest ways to try Edge Impulse is to follow this guided tour of . No programming experience is required!

pre-compiled software for supported boards
collect data
AWS S3 bucket
fetched
transformed using custom blocks
deployment options
web API
MLOps loop
custom processing block
custom learning block
expert mode
deployed in a variety of formats
EON Tuner
web API
organization hub
automated data pipelines
health machine learning example design
Professional Plan
Enterprise Trial
creating your own keyword spotting model in 5 minutes
For beginners
For ML practitioners
For embedded engineers
edge MLOps
Click here to watch the video
Edge Impulse for the edge AI lifecycle
Edge Impulse data acquisition
Edge Impulse impulse design
Edge Impulse processing block configuration
Edge Impulse learning block configuration
Edge Impulse testing
Edge Impulse deployment options
Edge Impulse EON Tuner
Edge Impulse automated data pipelines