LogoLogo
HomeDocsAPIProjectsForum
  • Getting Started
    • For beginners
    • For ML practitioners
    • For embedded engineers
  • Frequently asked questions
  • Tutorials
    • End-to-end tutorials
      • Continuous motion recognition
      • Responding to your voice
      • Recognize sounds from audio
      • Adding sight to your sensors
        • Collecting image data from the Studio
        • Collecting image data with your mobile phone
        • Collecting image data with the OpenMV Cam H7 Plus
      • Object detection
        • Detect objects using MobileNet SSD
        • Detect objects with FOMO
      • Sensor fusion
      • Sensor fusion using Embeddings
      • Processing PPG input with HR/HRV Features Block
      • Industrial Anomaly Detection on Arduino® Opta® PLC
    • Advanced inferencing
      • Continuous audio sampling
      • Multi-impulse
      • Count objects using FOMO
    • API examples
      • Running jobs using the API
      • Python API Bindings Example
      • Customize the EON Tuner
      • Ingest multi-labeled data using the API
      • Trigger connected board data sampling
    • ML & data engineering
      • EI Python SDK
        • Using the Edge Impulse Python SDK with TensorFlow and Keras
        • Using the Edge Impulse Python SDK to run EON Tuner
        • Using the Edge Impulse Python SDK with Hugging Face
        • Using the Edge Impulse Python SDK with Weights & Biases
        • Using the Edge Impulse Python SDK with SageMaker Studio
        • Using the Edge Impulse Python SDK to upload and download data
      • Label image data using GPT-4o
      • Label audio data using your existing models
      • Generate synthetic datasets
        • Generate image datasets using Dall·E
        • Generate keyword spotting datasets
        • Generate physics simulation datasets
        • Generate audio datasets using Eleven Labs
      • FOMO self-attention
    • Lifecycle Management
      • CI/CD with GitHub Actions
      • OTA Model Updates
        • with Nordic Thingy53 and the Edge Impulse APP
      • Data Aquisition from S3 Object Store - Golioth on AI
    • Expert network projects
  • Edge Impulse Studio
    • Organization hub
      • Users
      • Data campaigns
      • Data
      • Data transformation
      • Upload portals
      • Custom blocks
        • Transformation blocks
        • Deployment blocks
          • Deployment metadata spec
      • Health Reference Design
        • Synchronizing clinical data with a bucket
        • Validating clinical data
        • Querying clinical data
        • Transforming clinical data
        • Buildling data pipelines
    • Project dashboard
      • Select AI Hardware
    • Devices
    • Data acquisition
      • Uploader
      • Data explorer
      • Data sources
      • Synthetic data
      • Labeling queue
      • AI labeling
      • CSV Wizard (Time-series)
      • Multi-label (Time-series)
      • Tabular data (Pre-processed & Non-time-series)
      • Metadata
      • Auto-labeler [Deprecated]
    • Impulse design & Experiments
    • Bring your own model (BYOM)
    • Processing blocks
      • Raw data
      • Flatten
      • Image
      • Spectral features
      • Spectrogram
      • Audio MFE
      • Audio MFCC
      • Audio Syntiant
      • IMU Syntiant
      • HR/HRV features
      • Building custom processing blocks
        • Hosting custom DSP blocks
      • Feature explorer
    • Learning blocks
      • Classification (Keras)
      • Anomaly detection (K-means)
      • Anomaly detection (GMM)
      • Visual anomaly detection (FOMO-AD)
      • Regression (Keras)
      • Transfer learning (Images)
      • Transfer learning (Keyword Spotting)
      • Object detection (Images)
        • MobileNetV2 SSD FPN
        • FOMO: Object detection for constrained devices
      • NVIDIA TAO (Object detection & Images)
      • Classical ML
      • Community learn blocks
      • Expert Mode
      • Custom learning blocks
    • EON Tuner
      • Search space
    • Retrain model
    • Live classification
    • Model testing
    • Performance calibration
    • Deployment
      • EON Compiler
      • Custom deployment blocks
    • Versioning
  • Tools
    • API and SDK references
    • Edge Impulse CLI
      • Installation
      • Serial daemon
      • Uploader
      • Data forwarder
      • Impulse runner
      • Blocks
      • Himax flash tool
    • Edge Impulse for Linux
      • Linux Node.js SDK
      • Linux Go SDK
      • Linux C++ SDK
      • Linux Python SDK
      • Flex delegates
    • Edge Impulse Python SDK
  • Run inference
    • C++ library
      • As a generic C++ library
      • On your desktop computer
      • On your Zephyr-based Nordic Semiconductor development board
    • Linux EIM Executable
    • WebAssembly
      • Through WebAssembly (Node.js)
      • Through WebAssembly (browser)
    • Docker container
    • Edge Impulse firmwares
  • Edge AI Hardware
    • Overview
    • MCU
      • Nordic Semi nRF52840 DK
      • Nordic Semi nRF5340 DK
      • Nordic Semi nRF9160 DK
      • Nordic Semi nRF9161 DK
      • Nordic Semi nRF9151 DK
      • Nordic Semi nRF7002 DK
      • Nordic Semi Thingy:53
      • Nordic Semi Thingy:91
    • CPU
      • macOS
      • Linux x86_64
    • Mobile Phone
    • Porting Guide
  • Integrations
    • Arduino Machine Learning Tools
    • NVIDIA Omniverse
    • Embedded IDEs - Open-CMSIS
    • Scailable
    • Weights & Biases
  • Pre-built datasets
    • Continuous gestures
    • Running faucet
    • Keyword spotting
    • LiteRT (Tensorflow Lite) reference models
  • Tips & Tricks
    • Increasing model performance
    • Data augmentation
    • Inference performance metrics
    • Optimize compute time
    • Adding parameters to custom blocks
    • Combine Impulses
  • Concepts
    • Glossary
    • Data Engineering
      • Audio Feature Extraction
      • Motion Feature Extraction
    • ML Concepts
      • Neural Networks
        • Layers
        • Activation Functions
        • Loss Functions
        • Optimizers
          • Learned Optimizer (VeLO)
        • Epochs
      • Evaluation Metrics
    • Edge AI
      • Introduction to edge AI
      • What is edge computing?
      • What is machine learning (ML)?
      • What is edge AI?
      • How to choose an edge AI device
      • Edge AI lifecycle
      • What is edge MLOps?
      • What is Edge Impulse?
      • Case study: Izoelektro smart grid monitoring
      • Test and certification
    • What is embedded ML, anyway?
    • What is edge machine learning (edge ML)?
Powered by GitBook
On this page
  • 1. Setup
  • 1.1 Update your PROJECT_ID
  • 1.2 Obtain your API Key
  • 1.3 Run the setup block
  • 2. Customization
  • 2.1 Enable advanced EON Tuner mode (optional)
  • 2.2 Update the EON Tuner configuration
  • 2.3 Start the EON Tuner
  • 2.4 Track the EON Tuner optimization progress
  • 2.5 Get the EON Tuner optimization results
  1. Tutorials
  2. API examples

Customize the EON Tuner

PreviousPython API Bindings ExampleNextIngest multi-labeled data using the API

Last updated 1 year ago

The EON Tuner is Edge Impulse's AutoML (automated machine learning) tool to help you find and select the best embedded machine learning model for your application within the constraints of your target device.

This notebook will show you how to configure and run the EON Tuner programmatically using the !

1. Setup

This section will set up your environment and API credentials so that you can start making calls to the from this notebook. Run this block only once per runtime session, or every time you:

  • Open the notebook on your browser or IDE to start working on it, or

  • restart the runtime, or

  • change the project you are working on

API documentation is available at https://docs.edgeimpulse.com/reference/edge-impulse-api

1.1 Update your PROJECT_ID

You will need to enter the correct PROJECT_ID for the project you want to work with, in the code in section 1.3 below. The project ID can be obtained from your Edge Impulse Project's Dashboard under the Project Info section.

1.2 Obtain your API Key

The block below will prompt you for your project's API Key. You can obtain this key from your Project's Dashboard, by selecting the Keys tab from the top navigation bar.

1.3 Run the setup block

Run the block below and enter your API key when prompted. Then continue to the next section.

import getpass
import requests
import json
import pytz
from datetime import datetime
import time
import sys

PROJECT_ID = 94424  #👈🏼 Update as necessary!

URL_STUDIO = "https://studio.edgeimpulse.com/v1/api/"
URL_PROJECT = URL_STUDIO + str(PROJECT_ID)
KEY = getpass.getpass('Enter your API key: ')
API_HEADERS = {
    "Accept": "application/json",
    "x-api-key": KEY  #👈🏼 Update as necessary!
}


def get_eon_info(project, response_key):
    response = requests.get(URL_STUDIO + str(project) + "/optimize/state",
                            headers=API_HEADERS)
    if response.ok:
        return json.loads(response.text)[response_key]

response = requests.get(URL_PROJECT, headers=API_HEADERS)
if response.ok:
    data = json.loads(response.text)
    print(json.dumps(data, indent=2))
else:
    print("\n⛔️ An Error Ocurred, do you have the correct project ID?")

2. Customization

You can use the code in section 2.2 below to programmatically update the configuration of the EON Tuner.

2.1 Enable advanced EON Tuner mode (optional)

In basic mode (the default) you will be able to modify the datasetCategory, targetLatency and targetDevice. For additional control, ask your User Success or Solutions Engineer to enable the EON Tuner advanced mode for you.

2.2 Update the EON Tuner configuration

if "running" == get_eon_info(PROJECT_ID, "status")["status"]:
    print(
        "EON Tuner job is running, run section 2.4 to track the job's progress."
    )
else:
    payload = {
        "datasetCategory": # Select one of:
            # "speech_keyword"
            # "speech_continuous"
            # "audio_event"
            # "audio_continuous"
            # "transfer_learning"
            # "motion_event"
            # "motion_continuous"
            # "audio_syntiant"
            "audio_continuous",
        "targetLatency": 500,  # Latency in ms
        "targetDevice": {
            "name":  # Select one of:
            # cortex-m4f-80mhz
            # cortex-m7-216mhz
            # st-iot-discovery-kit
            # arduino-nano-33-ble
            # nordic-nrf52840-dk
            # nordic-nrf5340-dk
            # nordic-nrf9160-dk
            # silabs-thunderboard-sense-2
            # silabs-xg24
            # synaptics-ka10000
            # himax-we-i
            # wio-terminal
            # sony-spresense
            # ti-launchxl
            # portenta-h7
            # mbp-16-2020
            # raspberry-pi-4
            # raspberry-pi-rp2040
            # jetson-nano
            "jetson-nano",
            "ram": 262144,  # Memory in bytes
            "rom": 1048576  # Memory in bytes
        },
        "trainingCycles": 10,  # Default 100
        "tuningMaxTrials": 3,  # Default 30
        "tuningWorkers": 9,  # Default 3
        "minMACCS": 100,  # Default 0
        "maxMACCS": 1750,  # Default 1750000
        "tuningAlgorithm": # Select one of:
        # "random"
        # "hyperband"
        # "bayesian"
        "random"
    }
    response = requests.post(URL_PROJECT + "/optimize/config",
                            headers=API_HEADERS,
                            json=payload)
    if response.ok:
        # Show me the new configuration
        response = requests.get(URL_PROJECT + "/optimize/state", headers=API_HEADERS)
        if response.ok:
            print("EON Tuner configuration updated successfully!")
            print(json.dumps(get_eon_info(PROJECT_ID, "config"), indent=2))

2.3 Start the EON Tuner

Run the cell below to start spinning up EON Tuner optimization jobs. If your project is already running an EON Tuner optimization, go instead to section 2.4 to track the job's progress.

if "running" == get_eon_info(PROJECT_ID, "status")["status"]:
    print(
        "EON Tuner job is running, run section 2.4 to track the job's progress."
    )
else:
    response = requests.post(URL_PROJECT + "/jobs/optimize", headers=API_HEADERS)
    if response.ok:
        data = json.loads(response.text)
        print("EON Tuner job %s started successfully!" % data["id"])
        # print(json.dumps(data, indent=2))

2.4 Track the EON Tuner optimization progress

Run the cell below to track the progress of your EON Tuner job. You can safely stop and restart the cell at any time since this will not affect the running EON Tuner jobs.

finished = False
job_id = get_eon_info(PROJECT_ID, "activeTunerJobId")

while not finished:
    response = requests.get(URL_PROJECT + "/jobs/" + str(job_id) + "/status", headers=API_HEADERS)
    if response.ok:
        job_status = json.loads(response.text)
        if "finishedSuccessful" in job_status["job"].keys():
            print("\nJob completed")
            finished = True
        else:
            response = requests.get(URL_PROJECT + "/optimize/state", headers=API_HEADERS)
            if response.ok:
                status = json.loads(response.text)["status"]
                started = datetime.fromisoformat(job_status["job"]["started"].replace("Z", "+00:00"))
                for iter in range(30):
                    now = datetime.now(pytz.utc)
                    diff = now - started
                    sys.stdout.write("\r[%s] " % diff) # Back to the beginning
                    for x in range(status["numCompletedTrials"]):
                        sys.stdout.write("█")
                    for x in range(status["numRunningTrials"]):
                        sys.stdout.write("▒")
                    for x in range(status["numPendingTrials"]):
                        sys.stdout.write(" ")
                    total = status["numCompletedTrials"] + status[
                        "numRunningTrials"] + status["numPendingTrials"]
                    sys.stdout.write(" %d/%d" % (status["numCompletedTrials"], total))
                    time.sleep(1)

2.5 Get the EON Tuner optimization results

Use the cell below to retrieve the EON Tuner optimization results and save them to the trials variable.

trials = get_eon_info(PROJECT_ID, "trials")
print(trials[0].keys())
Edge Impulse API
Edge Impulse API