This tutorial will guide you through a people counting reference design built using the Silabs xG24 dev kit and the Arducam Mini 2MP Plus. The design showcases:
The Silabs xG24 Dev Kit featuring the EFR32 chipset with AI/ML accelerator providing:
Up to 3x speed increases in image-based ML processing (when compared to running a non-accelerated model),
An extremely low AI/ML and BT stack footprint allowing for concurrent inference and BT communication, and
The diagram below depicts the ML lifecycle architecture defined for our people counting reference design. We used a single xG24 Dev Kit to implement either a collection or an inference flow, recursively as required, during the development process.
For this project, we attached an Arducam mini 2MP plus to the xG24 Dev Kit in order to capture low-res images of people flow from a real environment. This can be achieved by connecting the two devices as specified in the table below:
Head over to your cloned Edge Impulse project, and go to Deployment. From here you can create the full firmware package built with all required libraries and dependencies. This includes the Silabs’ Bluetooth stack which can broadcast inference results to nearby devices. Select Silabs xG24 Dev Kit and click Build to build the firmware. Then download and extract the .zip file.
You can use your cloned project and xG24 Dev Kit camera assembly as a starting point to develop your own object detection project by following our FOMO guide.You can find the firmware source code at: firmware-silabs-xg24