On your Mbed-enabled development board
Last updated
Was this helpful?
Last updated
Was this helpful?
Impulses can be deployed as a C++ library. This packages all your signal processing blocks, configuration and learning blocks up into a single package. You can include this package in your own application to run the impulse locally. In this tutorial you'll export an impulse, and build an Mbed OS application to classify sensor data.
Note: Are you looking for an example that has all sensors included? The Edge Impulse firmware for the ST IoT Discovery Kit has that. See .
Make sure you followed the tutorial, and have a trained impulse. Also install the following software:
- make sure mbed
is in your PATH.
- make sure arm-none-eabi-gcc
is in your PATH.
We created an example repository which contains a small Mbed OS application, which takes the raw features as an argument, and prints out the final classification. Import this repository using Mbed CLI:
Head over to your Edge Impulse project, and go to Deployment. From here you can create the full library which contains the impulse and all external required libraries. Select C++ library and click Build to create the library.
Download the .zip
file and place the contents in the 'example-standalone-inferencing-mbed' folder (which you downloaded above). Your final folder structure should look like this:
With the project ready it's time to verify that the application works. Head back to the studio and click on Live classification. Then load a validation sample, and click on a row under 'Detailed result'.
To verify that the local application classifies the same, we need the raw features for this timestamp. To do so click on the 'Copy to clipboard' button next to 'Raw features'. This will copy the raw values from this validation file, before any signal processing or inferencing happened.
Open main.cpp
and paste the raw features inside the static const float features[]
definition, for example:
Then build and flash the application to your development board with Mbed CLI:
This will run the signal processing pipeline, and then classify the output:
Which matches the values we just saw in the studio. You now have your impulse running on your Mbed-enabled development board!
To see the output of the impulse, connect to the development board over a serial port on baud rate 115,200 and reset the board (e.g. by pressing the black button on the . You can do this with your favourite serial monitor or with the Edge Impulse CLI:
A demonstration on how to plug sensor values into the classifier can be found here: .