Building custom processing blocks
Extracting meaningful features from your data is crucial to building small and reliable machine learning models, and in Edge Impulse this is done through processing blocks. We ship a number of processing blocks for common sensor data (such as vibration and audio), but they might not be suitable for all applications. Perhaps you have a very specific sensor, want to apply custom filters, or are implementing the latest research in digital signal processing. In this tutorial you'll learn how to support these use cases by adding custom processing blocks to the studio.
Prerequisites
Make sure you followed the Continuous motion recognition tutorial, and have a trained impulse.
Development flow
This tutorial shows you the development flow of building custom processing blocks, and requires you to run the processing block on your own machine or server. Enterprise customers can share processing blocks within their organization, and run these on our infrastructure. See Hosting custom DSP blocks for more details.
1. Building your first custom processing block
Processing blocks take data and configuration parameters in, and return features and visualizations like graphs or images. To communicate to custom processing blocks, Edge Impulse studio will make HTTP calls to the block, and then use the response both in the UI, while generating features, or when training a machine learning model. Thus, to load a custom processing block we'll need to run a small server that responds to these HTTP calls. You can write this in any language, but we have created an example in Python. To load this example, open a terminal and run:
This creates a copy of the example project locally. Then, you can run the example either through Docker or locally via:
Docker
Locally
Then go to http://localhost:4446 and you should be shown some information about the block.
Exposing the processing block to the world
As this block is running locally the studio cannot reach the block. To resolve this we can use ngrok which can make a local port accessible from a public URL. After you've finished development you can move the processing block to a server with a publicly accessible address (or run it on our infrastructure through your enterprise account). To set up a tunnel:
Sign up for ngrok.
Install the ngrok binary for your platform.
Get a URL to access the processing block from the outside world via:
This yields a public URL for your block under Forwarding
. Note down the address that includes https://
.
Adding the custom block to Edge Impulse
Now that the custom processing block was created, and you've made it accessible to the outside world, you can add this block to Edge Impulse. In a project, go to Create Impulse, click Add a processing block, choose Add custom block (in the bottom left corner of the modal), and paste in the public URL of the block:
After you click Add block the block will show like any other processing block.
Add a learning bloc, then click Save impulse to store the impulse.
2. Adding configuration options
Processing blocks have configuration options which are rendered on the block parameter page. These could be filter configurations, scaling options, or control which visualizations are loaded. These options are defined in the parameters.json
file. Let's add an option to smooth raw data. Open example-custom-processing-block-python/parameters.json
and add a new section under parameters
:
Then, open example-custom-processing-block-python/dsp.py
and replace its contents with:
Restart the Python script, and then click Custom block in the studio (in the navigation bar). You now have a new option 'Smooth'. Every time an option changes we'll re-run the block, but as we have not written any code to respond to these changes nothing will happen.
2.1 Valid configuration types
We support a number of different types for configuration fields. These are:
int
- renders a numeric textbox that expects integers.float
- renders a numeric textbox that expects floating point numbers.string
- renders a textbox that expects a string.boolean
- renders a checkbox.select
- renders a dropdown box. This also requires the parametervalid
which should be an array of valid values. E.g. this renders a dropdown box with options 'low', 'high' and 'none':
3. Implementing smoothing and drawing graphs
To show the user what is happening we can also draw visuals in the processing block. Right now we support graphs (linear and logarithmic) and arbitrary images. By showing a graph of the smoothed sample we can quickly identify what effect the smooth option has on the raw signal. Open dsp.py
and replace the content with the following script. It contains a very basic smoothing algorithm and draws a graph:
Restart the script, and click the Smooth toggle to observe the difference. Congratulations! You have just created your first custom processing block.
3.1 Adding features to labels
If you extract set features from the signal, like the mean, that you that return, you can also label these features. These labels will be used in the feature explorer. To do so, add a labels
array that contains strings that map back to the features you return (labels
and features
should have the same length).
4. Other type of graphs
In the previous step we drew a linear graph, but you can also draw logarithmic graphs or even full images. This is done through the type
parameter:
4.1 Logarithmic graphs
This draws a graph with a logarithmic scale:
4.2 Images
To show an image you should return the base64 encoded image and its MIME type. Here's how you draw a small PNG image:
4.3 Dimensionality reduction
If you output high-dimensional data (like a spectrogram or an image) you can enable dimensionality reduction for the feature explorer. This will run UMAP over the data to compress the features into three dimensions. To do so, set:
On the info
object in parameters.json
.
4.4 Full documentation
For all options that you can return in a graph, see the Run DSP return types in the API documentation.
5. Running on device
Your custom block behaves exactly the same as any of the built-in blocks. You can process all your data, train neural networks or anomaly blocks, and validate that your model works. However, we cannot automatically generate optimized native code for the block, like we do for built-in processing blocks, but we try to help you write this code as much as possible. When you export your project to a C++ library we generate struct's for all the configuration options, and you only need to implement the extract_custom_block_features
function (you can change this name through the cppType
parameter in parameters.json
).
An example of this function for the spectral analysis block is listed in the inferencing sdk.
6. Other resources
Blog post: Utilize Custom Processing Blocks in Your Image ML Pipelines
7. Conclusion
With good feature extraction you can make your machine learning models smaller and more reliable, which are both very important when you want to deploy your model on embedded devices. With custom processing blocks you can now develop new feature extraction pipelines straight from Edge Impulse. Whether you're following the latest research, want to implement proprietary algorithms, or are just exploring data.
For inspiration we have published all our own blocks here: edgeimpulse/processing-blocks. If you've made an interesting block that you think is valuable for the community, please let us know on the forums or by opening a pull request. We'd be happy to help write efficient native code for the block, and then publish it as a standard block!
Last updated