In this tutorial we will demonstrate how to securely collect and process sensor data from a managed device with the Golioth on AI example project. The managed device is connected via cellular and streams labeled but unstructured data to a mutually accessible Object Storage (S3 Bucket), by collecting labeled sensor data in this method we can also demonstrate a common use for this form of data acquisition, performing automated Data processing or Data Quality steps to the collected data via custom transformation blocks.We will then apply data processing steps on the collected data using the custom CBOR transformation block to convert this data to a format we can use to later train a model. This same process can be adapted to perform Data Quality techniques that would typically be performed by an ML engineer.
Step 1: Create a Managed Golioth Device with Configured Firmware
Before proceeding with the integration, ensure that your Golioth device is set up with the appropriate firmware. For detailed instructions on initializing your Zephyr workspace, building, and flashing the firmware, please refer to the Golioth on AI repository README.
Once your device is set up, follow the instructions in the repository README to create the necessary Golioth pipelines. This includes setting up the Classification Results Pipeline and the Accelerometer Data Pipeline. Latest detailed steps can be found in the repository Golioth on AI repository README.Golioth Pipelines allows you to route data between different services and devices efficiently. You will need to configure two pipelines for this demo:
This pipeline handles raw accelerometer data by forwarding it to an S3 object storage bucket. Ensure the pipeline is set up to transfer binary data.
Important: Configure your AWS credentials by creating secrets in Golioth for AWS_ACCESS_KEY and AWS_SECRET_KEY, and specify the target bucket name and region.
Raw accelerometer data will be automatically routed to your S3 bucket via the Golioth pipeline. You can later import this data into Edge Impulse Studio for further model training.
Raw accelerometer data uploaded to S3 can be imported as an array of X-Y-Z float values, which will appear in the Edge Impulse Studio as time-series data.
In this tutorial, we demonstrated how to securely collect and process sensor data from a managed device using Golioth and Edge Impulse. By leveraging Golioth’s data routing capabilities and Edge Impulse’s machine learning tools, you can easily build and deploy custom models for gesture recognition or other applications. This example showcases the end-to-end workflow from data acquisition to model training and deployment, highlighting the seamless integration between Golioth and Edge Impulse.For more information on Golioth and Edge Impulse, visit the official documentation and tutorials: