Adds labels to a DataFrame based on provided label information.
Parameters
df
labels
label_col_name='label'
Converts JSON CBOR data to a pandas DataFrame.
Parameters
data
ts_col_name=None
Converts a sample to a DataFrame and adds labels if provided.
Parameters
sample
label_col_name: str | None = 'label'
ts_col_name: str | None = None
Fetch samples based on the provided parameters and stream them by their IDs.
Parameters
filename: str | None = None
category: str | None = None
labels: str | None = None
max_workers=None
Generates structured labels from a DataFrame based on transitions in the specified label column.
This function iterates over the rows of a pandas DataFrame and detects changes in the values of a specified label column. It groups consecutive rows with the same label value, and for each group, it returns a dictionary containing the start index, end index, and the label. Optionally, the result can be returned in a dictionary format, compatible with file saving, including the file name.
Parameters
df
label_col='label'
file_name=None
Build and download an impulse from Edge Impulse.
Build a model and download it from Edge Impulse. The model can be built for a specific target and engine. The model can be saved to a file if output_directory
is provided and the file name will be derived from the deployment target.
Parameters
deploy_model_type: str | None = None
engine: str = 'tflite'
deploy_target: str = 'zip'
output_directory: str | None = None
api_key: str | None = None
timeout_sec: float | None = None
Return
_io.BytesIO
Initialize the Edge Impulse Api.
Parameters
host: str | None = None
key: str | None = None
key_type: str = 'api'
Instance variables
classify: edgeimpulse_api.api.classify_api.ClassifyApi
Classify samples in your project.
client: edgeimpulse_api.api_client.ApiClient
The client used for initializing the apis, use set_client
to update the client.
deployment: edgeimpulse_api.api.deployment_api.DeploymentApi
Work with your model deployment targets.
devices: edgeimpulse_api.api.devices_api.DevicesApi
Work with devices in your project.
dsp: edgeimpulse_api.api.dsp_api.DSPApi
Work with (DSP) digital signal processing and feature extraction blocks in your project.
export: edgeimpulse_api.api.export_api.ExportApi
Export your project.
host: str | None
Edge Impulse studio host (defaults to production).
impulse: edgeimpulse_api.api.impulse_api.ImpulseApi
Work and manage your Impulse (on-device feature extraction and classification pipeline).
jobs: edgeimpulse_api.api.jobs_api.JobsApi
Start and manage long running jobs.
learn: edgeimpulse_api.api.learn_api.LearnApi
Work with keras and pretrained models.
login: edgeimpulse_api.api.login_api.LoginApi
Login and authenticate.
optimization: edgeimpulse_api.api.optimization_api.OptimizationApi
Optimize and find a better model with the EON tuner.
organization_blocks: edgeimpulse_api.api.organization_blocks_api.OrganizationBlocksApi
Work with organization blocks.
organization_create_project: edgeimpulse_api.api.organization_create_project_api.OrganizationCreateProjectApi
Automate project creation for organizations.
organization_data: edgeimpulse_api.api.organization_data_api.OrganizationDataApi
Work with organization data.
organization_data_campaigns: edgeimpulse_api.api.organization_data_campaigns_api.OrganizationDataCampaignsApi
Work with organization data campaigns.
organization_jobs: edgeimpulse_api.api.organization_jobs_api.OrganizationJobsApi
Start and manage organization jobs.
organization_pipelines: edgeimpulse_api.api.organization_pipelines_api.OrganizationPipelinesApi
Work with organization pipelines.
organization_portals: edgeimpulse_api.api.organization_portals_api.OrganizationPortalsApi
Create and manage organization portals.
organizations: edgeimpulse_api.api.organizations_api.OrganizationsApi
Work with your organizations.
performance_calibration: edgeimpulse_api.api.performance_calibration_api.PerformanceCalibrationApi
Calibrate your model performance with real world data.
projects: edgeimpulse_api.api.projects_api.ProjectsApi
Create and manage your projects.
raw_data: edgeimpulse_api.api.raw_data_api.RawDataApi
Work with your project data.
upload_portal: edgeimpulse_api.api.upload_portal_api.UploadPortalApi
Create and manage data upload portals.
user: edgeimpulse_api.api.user_api.UserApi
Manage user activation, creation and updates.
Authenticate against Edge Impulse.
Parameters
self
key: str
key_type: str = 'api'
host: str | None = None
Return
None
Get the default project ID from the provided API key.
Returns: int: The project associated with the api key.
Parameters
self
Return
int
Runs an organization job until completion.
Parameters
self
organization_id: int
job_id: int
data_cb=None
client=None
timeout_sec: int | None = None
Return
None
Runs a project job until completion.
Parameters
self
job_id: int
data_cb=None
client=None
project_id: int | None = None
timeout_sec: int | None = None
Return
None
Set the API client and initialize the APIs wit that client.
Parameters
self
client: edgeimpulse_api.api_client.ApiClient
Return
None
Wrapper class for sample data, labels, and associated metadata.
Sample data should be contained in a file or file-like object, for example, as the return from open(..., "rb")
. The upload_samples()
function expects Sample objects as input.
Parameters
data: io.BufferedIOBase | _io.StringIO | str
filename: str | None = None
category: Literal['training', 'testing', 'anomaly', 'split'] | None = 'split'
label: str | None = None
bounding_boxes: List[dict] | None = None
metadata: dict | None = None
sample_id: int | None = None
structured_labels: List[dict] | None = None
Class variables
bounding_boxes: List[dict] | None
category: Literal['training', 'testing', 'anomaly', 'split'] | None
data: io.BufferedIOBase | _io.StringIO | str
filename: str | None
label: str | None
metadata: dict | None
sample_id: int | None
structured_labels: List[dict] | None
Delete all samples in a given category.
If category is set to None
, all samples in the project are deleted.
Parameters
category: str | None = None
api_key: str | None = None
timeout_sec: float | None = None
Return
edgeimpulse_api.models.generic_api_response.GenericApiResponse | None
Delete a particular sample from a project given the sample ID.
Parameters
sample_id: int
api_key: str | None = None
timeout_sec: float | None = None
Return
edgeimpulse_api.models.generic_api_response.GenericApiResponse | None
Delete any samples from an Edge Impulse project that match the given filename.
Note: the filename
argument must not include the original extension. For example, if you uploaded a file named my-image.01.png
, you must provide the filename
as my-image.01
.
Parameters
filename: str
category: str | None = None
api_key: str | None = None
timeout_sec: float | None = None
Return
Tuple[Any | None, ...]
Download samples by their associated IDs from an Edge Impulse project.
Downloaded sample data is returned as a DownloadSample
object, which contains the raw data in a BytesIO object along with associated metadata.
Important! All time series data is returned as a JSON file (in BytesIO format) with a timestamp column. This includes files originally uploaded as CSV, JSON, and CBOR. Edge Impulse Studio removes the timestamp column from any uploaded CSV files and computes an estimated sample rate. The timestamps are computed based on the sample rate, will always start at 0, and will be in milliseconds. These timestamps may not be the same as the original timestamps in the uploaded file.
Parameters
sample_ids: int | List[int]
api_key: str | None = None
timeout_sec: float | None = None
max_workers: int | None = None
show_progress: bool | None = False
pool_maxsize: int | None = 20
pool_connections: int | None = 20
Return
List[edgeimpulse.data.sample_type.Sample]
Given an ID for a sample in a project, return the filename associated with that sample.
Note that while multiple samples can have the same filename, each sample has a unique sample ID that is provided by Studio when the sample is uploaded.
Parameters
sample_id: int
api_key: str | None = None
timeout_sec: float | None = None
Return
str | None
Get the sample IDs and filenames for all samples in a project, filtered by category, labels, or filename.
Note that filenames are given by the root of the filename when uploaded. For example, if you upload my-image.01.png
, it will be stored in your project with a hash such as my-image.01.png.4f262n1b.json
. To find the ID(s) that match this sample, you must provide the argument filename=my-image.01
. Notice the lack of extension and hash.
Because of the potential for multiple samples (i.e., different sample IDs) with the same filename, we recommend providing unique filenames for your samples when uploading.
Parameters
filename: str | None = None
category: str | None = None
labels: str | None = None
api_key: str | None = None
num_workers: int | None = 4
timeout_sec: float | None = None
Return
List[edgeimpulse.data.sample_type.SampleInfo]
Extract label and category information from the filename and assigns them to the sample object.
Files should look like this my-dataset/training/wave.1.cbor
where wave
is the label and training
is the category. It checks if there is training
, testing
or anomaly
in the filename to determine the sample category.
Parameters
sample: edgeimpulse.data.sample_type.Sample
file: str
Return
None
Convert numpy values to a sample that can be uploaded to Edge Impulse.
Parameters
values
sensors: List[edgeimpulse.data.sample_type.Sensor]
sample_rate_ms: int
Return
edgeimpulse.data.sample_type.Sample
Convert a dataframe to a single sample. Can handle both timeseries and non-timeseries data.
In order to be inferred as timeseries it must have:
More than one row
A sample rate or an index from which the sample rate can be inferred
Therefore must be monotonically increasing
And int or a date
Parameters
df
sample_rate_ms: int | None = None
label: str | None = None
filename: str | None = None
axis_columns: List[str] | None = None
metadata: dict | None = None
label_col: str | None = None
category: Literal['training', 'testing', 'split'] = 'split'
Return
edgeimpulse.data.sample_type.Sample
Download samples by their associated IDs from an Edge Impulse project.
Parameters
sample_ids: int | Sequence[int]
api_key: str | None = None
timeout_sec: float | None = None
max_workers: int | None = None
show_progress: bool | None = False
pool_maxsize: int | None = 20
pool_connections: int | None = 20
Return
Generator[edgeimpulse.data.sample_type.Sample, None, None]
Upload a directory of files to Edge Impulse.
Tries to autodetect whether it's an Edge Impulse exported dataset, or a standard directory. The files can be in CBOR, JSON, image, or WAV file formats. You can read more about the different file formats accepted by the Edge Impulse ingestion service here:
https://docs.edgeimpulse.com/reference/ingestion-api
Parameters
directory: str
category: str | None = None
label: str | None = None
metadata: dict | None = None
transform: <built-in function callable> | None = None
allow_duplicates: bool | None = False
show_progress: bool | None = False
batch_size: int | None = 1024
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload samples from a downloaded Edge Impulse dataset and preserve the info.labels
information.
Use this when you've exported your data in the studio, via the export
functionality.
Parameters
directory: str
transform: <built-in function callable> | None = None
allow_duplicates: bool | None = False
show_progress: bool | None = False
batch_size: int | None = 1024
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload numpy arrays as timeseries using the Edge Impulse data acquisition format.
Parameters
data
labels: List[str]
sensors: List[edgeimpulse.data.sample_type.Sensor]
sample_rate_ms: int
metadata: dict | None = None
category: Literal['training', 'testing', 'split', 'anomaly'] = 'split'
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload non-timeseries data to Edge Impulse where each dataframe row becomes a sample.
Parameters
df
feature_cols: List[str]
label_col: str | None = None
category_col: str | None = None
metadata_cols: List[str] | None = None
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a dataframe to Edge Impulse where each column represents a value in the timeseries data and the rows become the individual samples.
Parameters
df
sample_rate_ms: int
data_col_start: int | None = None
label_col: str | None = None
category_col: str | None = None
metadata_cols: List[str] | None = None
data_col_length: int | None = None
data_axis_cols: List[str] | None = None
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a dataframe where the rows contain multiple samples and timeseries data for those samples.
It uses a group_by
in order to detect what timeseries value belongs to which sample.
Parameters
df
timestamp_col: str
group_by: str
feature_cols: List[str]
label_col: str | None = None
category_col: str | None = None
metadata_cols: List[str] | None = None
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a single dataframe sample.
Upload a single dataframe sample to Edge Impulse.
Parameters
df
label: str | None = None
sample_rate_ms: int | None = None
filename: str | None = None
axis_columns: List[str] | None = None
metadata: dict | None = None
label_col: str | None = None
category: Literal['training', 'testing', 'split'] = 'split'
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload a directory of files to Edge Impulse.
The samples can be in CBOR, JSON, image, or WAV file formats.
Parameters
directory: str
category: str | None = None
label: str | None = None
metadata: dict | None = None
transform: <built-in function callable> | None = None
allow_duplicates: bool | None = False
show_progress: bool | None = False
batch_size: int | None = 1024
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Upload one or more samples to an Edge Impulse project using the ingestion service.
Each sample must be wrapped in a Sample
object, which contains metadata about that sample. Give this function a single Sample
or a List of Sample
objects to upload to your project. The data
field of the Sample
must be a raw binary stream, such as a BufferedIOBase object (which you can create with the open(..., "rb")
function).
Parameters
samples: edgeimpulse.data.sample_type.Sample | List[edgeimpulse.data.sample_type.Sample]
allow_duplicates: bool | None = False
api_key: str | None = None
timeout_sec: float | None = None
max_workers: int | None = None
show_progress: bool | None = False
pool_maxsize: int | None = 20
pool_connections: int | None = 20
Return
edgeimpulse.data.sample_type.UploadSamplesResponse
Check the current state of the tuner and optionally waits until the tuner has completed.
Parameters
timeout_sec: int | None = None
wait_for_completion: bool = True
Return
edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse
Retrieve the current state of the tuner run.
Returns: OptimizeStateResponse: The OptimizeStateResponse object representing the current Tuner state.
Parameters
tuner_coordinator_job_id: int
Return
edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse
List the tuner runs that have been done in the current project.
Returns: ListTunerRunsResponse: An object containing all the tuner runs
Return
edgeimpulse_api.models.list_tuner_runs_response.ListTunerRunsResponse
Retrieve and print logs for the tuner coordinator job.
Returns: None
Parameters
limit: int = 500
Return
None
Retrieve and print logs for the tuner job.
Returns: None
Parameters
limit: int = 500
Return
None
Replace the current Impulse configuration with one found in a trial fromm the tuner.
Parameters
trial_id: str
timeout_sec: float | None = None
wait_for_completion: bool | None = True
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Start a tuner job with custom configuration.
Parameters
config: edgeimpulse_api.models.optimize_config.OptimizeConfig
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Start the EON tuner with default settings. Use start_custom_tuner
to specify config.
Parameters
space: List[edgeimpulse_api.models.tuner_space_impulse.TunerSpaceImpulse]
target_device: str
target_latency: int
tuning_max_trials: int | None = None
name: str | None = None
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Get a tuner trial report dataframe with model metrics and block configuration.
This method needs pandas to be installed.
Generate a dataframe on the tuner trials including used input, model, learn block configuration and model validation metrics.
Parameters
state: edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse
Initialize the Edge Impulse Api.
Parameters
host: str | None = None
key: str | None = None
key_type: str = 'api'
Instance variables
classify: edgeimpulse_api.api.classify_api.ClassifyApi
Classify samples in your project.
client: edgeimpulse_api.api_client.ApiClient
The client used for initializing the apis, use set_client
to update the client.
deployment: edgeimpulse_api.api.deployment_api.DeploymentApi
Work with your model deployment targets.
devices: edgeimpulse_api.api.devices_api.DevicesApi
Work with devices in your project.
dsp: edgeimpulse_api.api.dsp_api.DSPApi
Work with (DSP) digital signal processing and feature extraction blocks in your project.
export: edgeimpulse_api.api.export_api.ExportApi
Export your project.
host: str | None
Edge Impulse studio host (defaults to production).
impulse: edgeimpulse_api.api.impulse_api.ImpulseApi
Work and manage your Impulse (on-device feature extraction and classification pipeline).
jobs: edgeimpulse_api.api.jobs_api.JobsApi
Start and manage long running jobs.
learn: edgeimpulse_api.api.learn_api.LearnApi
Work with keras and pretrained models.
login: edgeimpulse_api.api.login_api.LoginApi
Login and authenticate.
optimization: edgeimpulse_api.api.optimization_api.OptimizationApi
Optimize and find a better model with the EON tuner.
organization_blocks: edgeimpulse_api.api.organization_blocks_api.OrganizationBlocksApi
Work with organization blocks.
organization_create_project: edgeimpulse_api.api.organization_create_project_api.OrganizationCreateProjectApi
Automate project creation for organizations.
organization_data: edgeimpulse_api.api.organization_data_api.OrganizationDataApi
Work with organization data.
organization_data_campaigns: edgeimpulse_api.api.organization_data_campaigns_api.OrganizationDataCampaignsApi
Work with organization data campaigns.
organization_jobs: edgeimpulse_api.api.organization_jobs_api.OrganizationJobsApi
Start and manage organization jobs.
organization_pipelines: edgeimpulse_api.api.organization_pipelines_api.OrganizationPipelinesApi
Work with organization pipelines.
organization_portals: edgeimpulse_api.api.organization_portals_api.OrganizationPortalsApi
Create and manage organization portals.
organizations: edgeimpulse_api.api.organizations_api.OrganizationsApi
Work with your organizations.
performance_calibration: edgeimpulse_api.api.performance_calibration_api.PerformanceCalibrationApi
Calibrate your model performance with real world data.
projects: edgeimpulse_api.api.projects_api.ProjectsApi
Create and manage your projects.
raw_data: edgeimpulse_api.api.raw_data_api.RawDataApi
Work with your project data.
upload_portal: edgeimpulse_api.api.upload_portal_api.UploadPortalApi
Create and manage data upload portals.
user: edgeimpulse_api.api.user_api.UserApi
Manage user activation, creation and updates.
Authenticate against Edge Impulse.
Parameters
self
key: str
key_type: str = 'api'
host: str | None = None
Return
None
Get the default project ID from the provided API key.
Returns: int: The project associated with the api key.
Parameters
self
Return
int
Runs an organization job until completion.
Parameters
self
organization_id: int
job_id: int
data_cb=None
client=None
timeout_sec: int | None = None
Return
None
Runs a project job until completion.
Parameters
self
job_id: int
data_cb=None
client=None
project_id: int | None = None
timeout_sec: int | None = None
Return
None
Set the API client and initialize the APIs wit that client.
Parameters
self
client: edgeimpulse_api.api_client.ApiClient
Return
None