keras_model_metadata_metrics

edgeimpulse_api v1.0.0

edgeimpulse_api.models.keras_model_metadata_metrics module

class edgeimpulse_api.models.keras_model_metadata_metrics.KerasModelMetadataMetrics(*, type: KerasModelTypeEnum, loss: float, accuracy: Optional[float] = None, confusionMatrix: List[List[float]], report: Dict[str, Any], onDevicePerformance: List[KerasModelMetadataMetricsOnDevicePerformanceInner], predictions: Optional[List[ModelPrediction]] = None, visualization: StrictStr, isSupportedOnMcu: StrictBool, mcuSupportError: Optional[StrictStr] = None)

Bases: BaseModel

class Config()

Bases: object

allow_population_by_field_name(_ = Tru_ )

validate_assignment(_ = Tru_ )

accuracy(: Optional[float )

confusion_matrix(: List[List[float] )

classmethod from_dict(obj: dict)

Create an instance of KerasModelMetadataMetrics from a dict

classmethod from_json(json_str: str)

Create an instance of KerasModelMetadataMetrics from a JSON string

is_supported_on_mcu(: StrictBoo )

loss(: floa )

mcu_support_error(: Optional[StrictStr )

predictions(: Optional[List[ModelPrediction] )

report(: Dict[str, Any )

to_dict()

Returns the dictionary representation of the model using alias

to_json()

Returns the JSON representation of the model using alias

to_str()

Returns the string representation of the model using alias

visualization(: StrictSt )

classmethod visualization_validate_enum(v)

Last updated

Was this helpful?