keras_model_metadata_metrics
edgeimpulse_api v1.0.0
edgeimpulse_api.models.keras_model_metadata_metrics module
class edgeimpulse_api.models.keras_model_metadata_metrics.KerasModelMetadataMetrics(*, type: KerasModelTypeEnum, loss: float, accuracy: Optional[float] = None, confusionMatrix: List[List[float]], report: Dict[str, Any], onDevicePerformance: List[KerasModelMetadataMetricsOnDevicePerformanceInner], predictions: Optional[List[ModelPrediction]] = None, visualization: StrictStr, isSupportedOnMcu: StrictBool, mcuSupportError: Optional[StrictStr] = None)Bases:
BaseModel
class Config()Bases:
object
allow_population_by_field_name(_ = Tru_ )
validate_assignment(_ = Tru_ )
accuracy(: Optional[float )
confusion_matrix(: List[List[float] )
classmethod from_dict(obj: dict)Create an instance of KerasModelMetadataMetrics from a dict
classmethod from_json(json_str: str)Create an instance of KerasModelMetadataMetrics from a JSON string
is_supported_on_mcu(: StrictBoo )
loss(: floa )
mcu_support_error(: Optional[StrictStr )
on_device_performance(: List[KerasModelMetadataMetricsOnDevicePerformanceInner )
predictions(: Optional[List[ModelPrediction] )
report(: Dict[str, Any )
to_dict()Returns the dictionary representation of the model using alias
to_json()Returns the JSON representation of the model using alias
to_str()Returns the string representation of the model using alias
type(_: KerasModelTypeEnum
visualization(: StrictSt )
classmethod visualization_validate_enum(v)
Last updated
Was this helpful?