keras_model_metadata
edgeimpulse_api v1.0.0
edgeimpulse_api.models.keras_model_metadata module
class edgeimpulse_api.models.keras_model_metadata.KerasModelMetadata(*, success: StrictBool, error: Optional[StrictStr] = None, created: datetime, layers: List[KerasModelLayer], classNames: List[StrictStr], availableModelTypes: List[KerasModelTypeEnum], recommendedModelType: KerasModelTypeEnum, modelValidationMetrics: List[KerasModelMetadataMetrics], hasTrainedModel: StrictBool, mode: StrictStr, objectDetectionLastLayer: Optional[ObjectDetectionLastLayer] = None)Bases:
BaseModel
class Config()Bases:
object
allow_population_by_field_name(_ = Tru_ )
validate_assignment(_ = Tru_ )
available_model_types(: List[KerasModelTypeEnum )
class_names(: List[StrictStr )
created(: datetim )
error(: Optional[StrictStr )
classmethod from_dict(obj: dict)Create an instance of KerasModelMetadata from a dict
classmethod from_json(json_str: str)Create an instance of KerasModelMetadata from a JSON string
has_trained_model(: StrictBoo )
layers(: List[KerasModelLayer )
mode(: StrictSt )
classmethod mode_validate_enum(v)
model_validation_metrics(: List[KerasModelMetadataMetrics )
object_detection_last_layer(: Optional[ObjectDetectionLastLayer )
recommended_model_type(_: KerasModelTypeEnum
success(: StrictBoo )
to_dict()Returns the dictionary representation of the model using alias
to_json()Returns the JSON representation of the model using alias
to_str()Returns the string representation of the model using alias
Last updated
Was this helpful?