Train Model Anomaly
Take the output from a DSP block and train an anomaly detection model using K-means. Updates are streamed over the websocket API.
curl --request POST \
--url https://studio.edgeimpulse.com/v1/api/{projectId}/jobs/train/anomaly/{learnId} \
--header 'content-type: application/json' \
--header 'x-jwt-token: REPLACE_KEY_VALUE' \
--data '{"axes":[0,11,22],"clusterCount":32,"minimumConfidenceRating":0.3}'
Last updated
Was this helpful?