Train Model Anomaly

Take the output from a DSP block and train an anomaly detection model using K-means. Updates are streamed over the websocket API.

curl --request POST \
  --url https://studio.edgeimpulse.com/v1/api/{projectId}/jobs/train/anomaly/{learnId} \
  --header 'content-type: application/json' \
  --header 'x-jwt-token: REPLACE_KEY_VALUE' \
  --data '{"axes":[0,11,22],"clusterCount":32,"minimumConfidenceRating":0.3}'

Last updated

Was this helpful?