Overview
We support any Edge AI Hardware that can run C++, and more!
You will find on this page a list of edge AI hardware targets that are either maintained by Edge Impulse or by our partners. During the integration and when possible, we leverage and integrate the hardware capabilities (optimized floating point units (FPU), DSP and Neural Network accelerations, GPU or other AI accelerators).
For the MCU-based hardware, depending on the integration we provide several or all of the following options:
A default Edge Impulse firmware, ready to be flashed on the hardware. The firmware capabilities depends on the integration (see also Edge Impulse firmwares).:
Data collection: Enables to connect the hardware to Edge Impulse Studio to simplify your getting started journey and ease the data collection from some or all the sensors available.
Inferencing example: This includes the data sampling, extracting features using the signal processing blocks and run the inference using learning blocks.
The open-source code for the firmware, which comes with documentation on how to build and compile the Edge Impulse firmware.
Examples on how to integrate your Impulse with your custom firmware, either using the C++ inferencing SDK or using libraries or components tailored for your hardware development environments. In our Github repository, search for the
example-standalone-inferencing-%target%
Integrated deployment options to directly export a ready-to-flash Edge Impulse firmware packaged with your Impulse (including both the signal processing and the machine learning model).
Profiling (estimation of memory, flash and latency) available in Edge Impulse Studio and in the Edge Impulse Python SDK.
Extensive hardware testing, to make sure any improvements and changes in Edge Impulse will not break the current integration.
Not on the list?
If you are using a different hardware target or custom PCB? No problem!
You can upload data to Edge Impulse in a variety of ways, such as using the Data forwarder, the Edge Impulse for Linux SDK, or by uploading files directly (e.g. CSV, JPG, WAV).
From there, your trained model can be deployed as a C++ library. It can require some effort, but most build systems (for computers, smartphones, and microcontrollers) will work with our C++ library. This, of course, requires that your build system has a C++ compiler and that there is enough flash/RAM on your device to run the library/model. And although we leverage hardware acceleration when possible on the hardware listed in this section, keep in mind that our EON Compiler will optimize your preprocessing and your ai models for any targets compared to traditional compiler options.
Also, if you feel like porting the official Edge Impulse firmware to your own board, use this porting guide.
The hardware targets listed in this section are the perfect way to start building machine learning solutions on real embedded hardware. Edge Impulse's Solution Engineers and Embedded Engineers have a strong expertise with these hardware targets and can help on your integration. Feel free to contact us.
If you just want to experience Edge Impulse? You can also use your Mobile phone!
Edge AI Hardware
Production-ready
Advantech ICAM-540 (Linux | Industrial AI Camera with NVIDIA Orin NX)
Advantech ICAM-500 (Linux | Industrial AI Camera with NVIDIA Jetson Nano)
Advantech MIC AI Series (Linux | Edge AI Box with NVIDIA Jetson)
MCS AI Gateway 4434S (Linux | Edge AI Gateway)
Seeed SenseCAP A1101 (MCU | LoRaWAN Vision AI Sensor using Himax)
BrickML (MCU | Industry Reference Design using RA6M5)
MCU
Arducam Pico4ML TinyML Dev Kit (RP2040 | Cortex-M0+ 200MHz)
Arduino Nano 33 BLE Sense (nRF52840 | Cortex-M4F 64MHz)
Arduino Nicla Sense ME (nRF52832 | Cortex-M4 64MHz)
Arduino Nicla Vision (STM32H747AII6 | Cortex-M7 480MHz)
Arduino Portenta H7 (STM32H747XI | Cortex-M7 480MHz)
Blues Wireless Swan (STM32L4+ | Cortex-M4 120MHz)
Espressif ESP-EYE (ESP32 | Xtensa LX6 240MHz)
Himax WE-I Plus (HX6537-A | ARC DSP 400MHz)
Infineon CY8CKIT-062-BLE Pioneer Kit (PSoC63 | Cortex-M4F 150MHz)
Infineon CY8CKIT-062S2 Pioneer Kit (PSoC62 | Cortex-M4F 150MHz)
Nordic Semi nRF52840 DK (nRF52840 | Cortex-M4F 64MHz)
Nordic Semi nRF5340 DK (nRF5340 | Cortex-M33 128MHz)
Nordic Semi nRF9160 DK (nRF9160 | Cortex-M33 64MHz)
Nordic Semi nRF7002 DK (nRF7002 | Cortex-M33 128MHz)
Nordic Semi Thingy:53 (nRF5340 | Cortex-M33 128MHz)
Nordic Semi Thingy:91 (nRF9160 | Cortex-M33 64MHz)
Open MV Cam H7 Plus (STM32H743II | Cortex-M7 480MHz)
Particle Photon 2 (RTL8721DM | Cortex-M33 200MHz)
Particle Boron (nRF52840 | Cortex-M4 64MHz)
RAKwireless WisBlock (RP2040 | Cortex-M0+ 200MHz, Xtensa LX6 240MHz, ESP32, nRF52840 | Cortex-M4F 64MHz)
Raspberry Pi RP2040 (RP2040 | Cortex-M0+ 200MHz)
Renesas CK-RA6M5 Cloud Kit (RA6M5 | Cortex-M33 200MHz)
Renesas EK-RA8D1 (RA8D1 | Cortex-M85 480MHz)
Seeed Grove - Vision AI Module (HX6537-A | ARC DSP 400MHz)
Seeed Wio Terminal (HX6537-A | ARC DSP 400MHz)
Seeed XIAO nRF52840 Sense (nRF52840 | Cortex-M4F 64MHz)
Seeed XIAO ESP32 S3 Sense (ESP32S3 | Xtensa LX7 240MHz)
SiLabs Thunderboard Sense 2 (EFR32MG12 | Cortex-M4 40MHz)
Sony's Spresense (CXD5602 | Cortex-M4F 156MHz)
ST B-L475E-IOT01A (STM32L4 | Cortex-M4 120MHz)
TI CC1352P Launchpad (CC1352P | Cortex-M4F 48MHz)
MCU + AI Accelerators
Alif Ensemble (Cortex-M55 + Ethos-U55 (multiple cores))
Arduino Nicla Voice (Cortex-M4 + NDP120)
Avnet RASynBoard (RA6 + NDP120)
SiLabs xG24 Dev Kit (EFR32MG24 | Cortex-M33 78MHz)
Synaptics Katana EVK (KA10000)
Syntiant Tiny ML Board (NDP101)
CPU
macOS (x86, M1, M2)
Linux x86_64 (x86_64)
Raspberry Pi 4 (ARMv7 | Cortex-A72 1.5GHz)
Texas Instruments SK-AM62 (AM62x | Cortex-A53 1.4GHz)
CPU + AI Accelerators
AVNET RZBoard V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)
BrainChip AKD1000 (x86_64 or AARCH64 + AKD1000)
i.MX 8M Plus EVK (i.MX 8M Plus | Cortex-A53 1.8GHz + NPU)
MemryX MX3 (x84_64 | MX3 5 TFLOPs)
MistyWest MistySOM RZ/V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)
Renesas RZ/V2L (RZ/V2L | Cortex-A55 1.2GHz + DRPAI)
Texas Instruments SK-TDA4VM (TDA4VM | Cortex-A72 + C7x 8TFLOPs)
Texas Instruments SK-AM62A-LP (AM62A | Cortex-A53 + AI Accelerator 2 TFLOPs)
Texas Instruments SK-AM68A (AM68x | Cortex-A72 + AI Accelerator 8 TFLOPs)
CPU + GPU
Advantech ICAM-540 (AARCH64 | Cortex-A78AE (NVIDIA Orin NX) + NVIDIA Ampere 1024 cores + 32 Tensor Cores)
NVIDIA Jetson Orin and Nano (Nano: AARCH64 | Cortex-A57 + NVIDIA Maxwell 128 CUDA cores)
Seeed reComputer Jetson (AARCH64 | Cortex-A47 1.43 GHz + NVIDIA Maxwell 128 CUDA cores)
Last updated