Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Parameters
**data: Any
Bases
pydantic.main.BaseModel
pydantic.utils.Representation
Class variables
Config
akida_edge_learning_config: edgeimpulse_api.models.akida_edge_learning_config.AkidaEdgeLearningConfig | None
anomaly_capacity: edgeimpulse_api.models.anomaly_capacity.AnomalyCapacity | None
augmentation_policy_image: edgeimpulse_api.models.augmentation_policy_image_enum.AugmentationPolicyImageEnum
augmentation_policy_spectrogram: edgeimpulse_api.models.augmentation_policy_spectrogram.AugmentationPolicySpectrogram | None
auto_class_weights: pydantic.types.StrictBool | None
batch_size: pydantic.types.StrictInt | None
block_parameters: edgeimpulse_api.models.block_parameters.BlockParameters | None
custom_parameters: Dict[str, pydantic.types.StrictStr] | None
custom_validation_metadata_key: pydantic.types.StrictStr | None
default_batch_size: pydantic.types.StrictInt
dependencies: edgeimpulse_api.models.dependency_data.DependencyData
last_shown_model_engine: edgeimpulse_api.models.model_engine_short_enum.ModelEngineShortEnum | None
last_shown_model_variant: edgeimpulse_api.models.keras_model_variant_enum.KerasModelVariantEnum | None
learning_rate: float
minimum_confidence_rating: float
mode: pydantic.types.StrictStr
name: pydantic.types.StrictStr
profile_int8: pydantic.types.StrictBool
script: pydantic.types.StrictStr
selected_model_type: edgeimpulse_api.models.keras_model_type_enum.KerasModelTypeEnum
shape: pydantic.types.StrictStr
show_advanced_training_settings: pydantic.types.StrictBool
show_augmentation_training_settings: pydantic.types.StrictBool
skip_embeddings_and_memory: pydantic.types.StrictBool
train_test_split: float | None
trained: pydantic.types.StrictBool
training_cycles: pydantic.types.StrictInt
transfer_learning_models: List[edgeimpulse_api.models.transfer_learning_model.TransferLearningModel]
type: edgeimpulse_api.models.learn_block_type.LearnBlockType | None
use_learned_optimizer: pydantic.types.StrictBool | None
visual_layers: List[edgeimpulse_api.models.keras_visual_layer.KerasVisualLayer]
Create an instance of KerasConfig from a dict
Parameters
obj: dict
Return
edgeimpulse_api.models.keras_config.KerasConfig
Create an instance of KerasConfig from a JSON string
Parameters
json_str: str
Return
edgeimpulse_api.models.keras_config.KerasConfig
Parameters
v
Returns the dictionary representation of the model using alias
Parameters
self
Returns the JSON representation of the model using alias
Parameters
self
indent=None
Return
str
Returns the string representation of the model using alias
Parameters
self
Return
str