Check the current state of the tuner and optionally waits until the tuner has completed.
Parameters
timeout_sec: int | None = None
wait_for_completion: bool = True
Return
edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse
Retrieve the current state of the tuner run.
Returns: OptimizeStateResponse: The OptimizeStateResponse object representing the current Tuner state.
Parameters
tuner_coordinator_job_id: int
Return
edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse
List the tuner runs that have been done in the current project.
Returns: ListTunerRunsResponse: An object containing all the tuner runs
Return
edgeimpulse_api.models.list_tuner_runs_response.ListTunerRunsResponse
Retrieve and print logs for the tuner coordinator job.
Returns: None
Parameters
limit: int = 500
Return
None
Retrieve and print logs for the tuner job.
Returns: None
Parameters
limit: int = 500
Return
None
Replace the current Impulse configuration with one found in a trial fromm the tuner.
Parameters
trial_id: str
timeout_sec: float | None = None
wait_for_completion: bool | None = True
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Start a tuner job with custom configuration.
Parameters
config: edgeimpulse_api.models.optimize_config.OptimizeConfig
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Start the EON tuner with default settings. Use start_custom_tuner
to specify config.
Parameters
space: List[edgeimpulse_api.models.tuner_space_impulse.TunerSpaceImpulse]
target_device: str
target_latency: int
tuning_max_trials: int | None = None
name: str | None = None
Return
edgeimpulse_api.models.start_job_response.StartJobResponse
Get a tuner trial report dataframe with model metrics and block configuration.
This method needs pandas to be installed.
Generate a dataframe on the tuner trials including used input, model, learn block configuration and model validation metrics.
Parameters
state: edgeimpulse_api.models.optimize_state_response.OptimizeStateResponse