Check for standard errors and raise an exception with the details if found.
Parameters
request
Configure generic api client which the right key.
Parameters
key: str
key_type: Optional[str] = 'api'
host: Optional[str] = 'https://studio.edgeimpulse.com/v1'
Return
edgeimpulse_api.api_client.ApiClient
Connects to the websocket server.
Parameters: token (str): The authentication token. host (str, optional): The hostname. If None, API_ENDPOINT will be used.
Returns: object: Websocket object.
Parameters
token
host: str = None
Return
socketio.client.Client
Derive project id from api_key used to configure generic client.
Parameters
client: edgeimpulse_api.api_client.ApiClient
Return
int
Encode a file as base64.
Parameters
filename: str
Gets a websocket to listen to organization events.
Parameters
client
organization_id: int
host: str = None
Return
socketio.client.Client
Pull a list of profile devices.
Parameters
client: edgeimpulse_api.api_client.ApiClient
project_id: Optional[int] = None
Return
List[str]
Pull a list of deploy targets.
Parameters
client: edgeimpulse_api.api_client.ApiClient
project_id: Optional[int] = None
Return
List[str]
Gets a websocket to listen to project events.
Parameters
client
project_id: int
host: str = None
Return
socketio.client.Client
Get user agent string for API calls so we can track usage.
Parameters
add_platform_info=False
Load tflite model.
Parameters
model: Union[pathlib.Path, str, bytes, Any]
tempdir: str
Return
Tuple[str, str]
Ensure representative data is saved to disk for upload.
Parameters
data: Union[pathlib.Path, str, bytes, Any]
Return
Optional[str]
Check if model is a keras model.
Parameters
model
Check if array is a numpy array.
Parameters
array
Check if given model is an onnx model.
Parameters
model
Check if given path is a numpy file.
Parameters
path
Check if given path is a onnx file.
Parameters
path
Check if directory contains a saved model.
Parameters
model_dir
Check if path is poiting to a zipped model.
Parameters
model
Check if given path is a. string or a Path
.
Parameters
path
Create zip archive from a model path.
Parameters
saved_model_path
Return True if NumPy is installed, otherwise False.
Return
bool
Return True if ONNX is installed, otherwise False.
Return
bool
Return True if pandas is installed, otherwise False.
Return
bool
Poll a specific job within a project until done or timmeout is reached.
Parameters
jobs_client: edgeimpulse_api.api.jobs_api.JobsApi
project_id: int
job_id: int
timeout_sec: Optional[float] = None
Return
edgeimpulse_api.models.get_job_response.GetJobResponse
Runs a project or organization job until completion.
Parameters
ws
job_id: int
data_cb=None
timeout_sec: Optional[int] = None
Runs an organization job until completion.
Parameters
organization_id: int
job_id: int
data_cb=None
client=None
timeout_sec: Optional[int] = None
Return
None
Runs a project job until completion.
Parameters
job_id: int
data_cb=None
client=None
project_id: Optional[int] = None
timeout_sec: Optional[int] = None
Return
None
Save a machine learning model to the specified directory.
Parameters
model: Union[pathlib.Path, str, bytes]
directory: str
Return
str
Save the representive data to a directory.
Parameters
data: Union[pathlib.Path, str, bytes]
directory: str
Return
str
Return True if TensorFlow is installed, otherwise False.
Return
bool
Upload a model and data to Edge Impulse servers.
Parameters
tempdir: str
client: edgeimpulse_api.api_client.ApiClient
project_id: int
model: Union[pathlib.Path, str, bytes, Any]
representative_data: Union[pathlib.Path, str, bytes, Any, ForwardRef(None)] = None
device: Optional[str] = None
timeout_sec: Optional[float] = None
Return
edgeimpulse_api.models.get_job_response.GetJobResponse