train_input.json The train_input.json
file is passed to custom learning blocks as the value for the --input-file
argument. It contains configuration information for model training options that you may want to use within your training script, if applicable. The specification is shown below.
File structure
Copy type CreateKerasTrainModelOptions = {
classes : string [] ,
mode : 'classification' | 'regression' | 'object-detection' | 'visual-anomaly' | 'anomaly-gmm' ;
printHWInfo : boolean | undefined ,
inputShapeString : string ,
yType : 'npy' | 'structured' ;
trainTestSplit : number ,
stratifiedTrainTest : boolean ,
onlineDspConfig : OnlineDspConfig | undefined ;
convertInt8 : boolean ,
profileInt8 : boolean ,
skipEmbeddingsAndMemory : boolean ,
objectDetectionLastLayer : 'mobilenet-ssd' | 'fomo' | 'yolov2-akida' | 'yolov5' | 'yolov5v5-drpai' |
'yolox' | 'yolov7' | 'tao-retinanet' | 'tao-ssd' | 'tao-yolov3' | 'tao-yolov4' | undefined ;
objectDetectionAugmentation : boolean | undefined ,
objectDetectionBatchSize : number | undefined ,
syntiantTarget ?: boolean ,
maxTrainingTimeSeconds : number ,
remainingGpuComputeTimeSeconds : number ,
isEnterpriseProject : boolean ,
flattenDataset : boolean ,
akidaModel : boolean ,
akidaEdgeModel : boolean ,
skipMemoryProfiling : boolean ,
tensorboardLogging : boolean ,
customValidationSplit : boolean ,
validationMetadataKey ?: string ,
customVariantsToProfile : CustomVariantInferenceJobModelVariant [] | undefined ;
};
File example
Copy {
"classes" : [
"idle" ,
"snake" ,
"updown" ,
"wave"
] ,
"mode" : "classification" ,
"printHWInfo" : false ,
"inputShapeString" : "(39,)" ,
"yType" : "npy" ,
"trainTestSplit" : 0.2 ,
"stratifiedTrainTest" : false ,
"convertInt8" : true ,
"profileInt8" : true ,
"skipEmbeddingsAndMemory" : false ,
"objectDetectionAugmentation" : false ,
"syntiantTarget" : false ,
"maxTrainingTimeSeconds" : 604800 ,
"remainingGpuComputeTimeSeconds" : null ,
"isEnterpriseProject" : true ,
"flattenDataset" : false ,
"akidaModel" : false ,
"akidaEdgeModel" : false ,
"skipMemoryProfiling" : false ,
"tensorboardLogging" : false ,
"customValidationSplit" : false
}