The Syntiant TinyML Board is a tiny development board with a microphone and accelerometer, USB host microcontroller and an always-on Neural Decision Processor™, featuring ultra low-power consumption, a fully connected neural network architecture, and fully supported by Edge Impulse. You'll be able to sample raw data, build models, and deploy trained embedded machine learning models directly from the Edge Impulse studio to create the next generation of low-power, high-performance audio interfaces.
The Edge Impulse firmware for this development board is open source and hosted on GitHub.
IMU data acquisition - SD Card
An SD Card is required to use IMU data acquisition as the internal RAM of the MCU is too small. You don't need the SD Card for inferencing only or for audio projects.
To set this device up in Edge Impulse, you will need to install the following software:
Select one of the 2 firmwares below for audio or IMU projects:
Insert SD Card if you need IMU data acquisition and connect the USB cable to your computer. Double-click on the script for your OS. The script will flash the Arduino firmware and a default model on the NDP101 chip.
Flashing issues
0x000000: read 0x04 != expected 0x01
Some flashing issues can occur on the Serial Flash. In this case, open a Serial Terminal on the TinyML board and send the command: :F. This will erase the Serial Flash and should fix the flashing issue.
Connect the Syntiant TinyML Board directly to your computer's USB port. Linux, Mac OS, and Windows 10 platforms are supported.
Audio - USB microphone (macOS/Linux only)
Check that the Syntiant TinyML enumerates as "TinyML" or "Arduino MKRZero". For example, in Mac OS you'll find it under System Preferences/Sound:
Audio acquisition - Windows OS
Using the Syntiant TinyML board as an external microphone for data collection doesn't currently work on Windows OS.
IMU
From a command prompt or terminal, run:
This will start a wizard which will ask you to log in and choose an Edge Impulse project. If you want to switch projects run the command with --clean
.
Alternatively, recent versions of Google Chrome and Microsoft Edge can collect data directly from your development board, without the need for the Edge Impulse CLI. See this blog post for more information.
That's all! Your device is now connected to Edge Impulse. To verify this, go to your Edge Impulse project, and click Devices. The device will be listed here.
With everything set up you can now build your first machine learning model and evaluate it using the Syntiant TinyML Board with this tutorial:
How to use Arduino-CLI with macOS M1 chip? You will need to install Rosetta2 to run the Arduino-CLI. See details on Apple website.
Board is detected as MKRZero and not TinyML: when compiling using the Arduino IDE, the board name will change from TinyML to MKRZero as it automatically retrieves the name from the board type. This doesn't affect the execution of the firmware.
How to label my classes? The NDP101 chip expects one and only negative class and it should be the last in the list. For instance, if your original dataset looks like: yes, no, unknown, noise
and you only want to detect the keyword 'yes' and 'no', merge the 'unknown' and 'noise' labels in a single class such as z_openset
(we prefix it with 'z' in order to get this class last in the list).